DOI QR코드

DOI QR Code

Monitoring the effects of silica fume, copper slag and nano-silica on the mechanical properties of polypropylene fiber-reinforced cementitious composites

  • Moosa Mazloom (Department of Structural and Earthquake Engineering, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University) ;
  • Hasan Salehi (Department of Mechanical Engineering, Khatam Ol Anbia University) ;
  • Mohammad Akbari-Jamkarani (Department of Structural and Earthquake Engineering, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University)
  • 투고 : 2024.05.20
  • 심사 : 2024.06.15
  • 발행 : 2024.06.25

초록

In this study, to reduce the amount of cement consumed in the production of cementitious composites, the effects of partial replacement of cement weight with nano-silica, silica fume, and copper slag on the mechanical properties of polypropylene fiber-reinforced cementitious composites are investigated. For this purpose, the effect of replacing cement weight by each of the aforementioned materials individually and in combination is studied. A total of 34 mix designs were prepared, and their compressive, tensile, and flexural strengths were obtained for each mix. Among the mix designs with one cement replacement material, the highest strength is related to the sample containing 2.5% nano-silica. In this mix design, the compressive, tensile, and flexural strengths improve by about 33%, 13%, and 15%, respectively, compared to the control sample. In the ones with two cement replacement materials, the highest strengths are related to the mix made with 10% silica fume along with 2% nano-silica. In this mix design, compressive, tensile, and flexural strengths increase by about 42%, 18%, and 20% compared to the control sample, respectively. Furthermore, in the mixtures containing three cement substitutes, the final optimal mix design for all three strengths has 15% silica fume, 10% copper slag, and 2% nano-silica. This mix design improves the compressive, tensile, and flexural strengths by about 57%, 23%, and 26%, respectively, compared to the control sample. Finally, two relationships have been presented that can be used to predict the values of tensile and flexural strengths of cementitious composites with very good accuracy only by determining the compressive strength of the composites.

키워드

과제정보

This work was supported by Shahid Rajaee Teacher Training University under grant number 5973/70.

참고문헌

  1. Abna, A. and Mazloom, M. (2022), "Flexural properties of fiber reinforced concrete containing silica fume and nano-silica", Mater. Lett., 316, 132003. https://doi.org/10.1016/j.matlet.2022.132003.
  2. ACI 318-14 (2015), Building code requirements for structural concrete and commentary on building code requirements for structural concrete, American Concrete Institute.
  3. Afzali-Naniz, O. and Mazloom, M. (2019), "Assessment of the influence of micro-and nano-silica on the behavior of self-compacting lightweight concrete using full factorial design", Asian J. Civil Eng.. 20(1), 57-70. https://doi.org/10.1007/s42107-018-0088-2.
  4. Amiri, M.M., Adabi, M., Darvishan, E. and Armanpour, A.H. (2022), "Investigation of effect of size and content of nano/SiO2 on the strength and durability of RCC in freezing-thawing cycles", Sharif J. Civil Eng., 38.2(1.2), 145-154. https://doi.org/10.24200/J30.2021.58139.2958.
  5. ASTM-C494 (2001), Standard specification for chemical admixtures for concrete, American Society of Testing Materials
  6. ASTM-C496 (2002), Standard test method for splitting tensile strength of cylindrical concrete specimens, ASTM International, West Conshohocken, PA, USA.
  7. Aydin, A.C. (2007), "Self compactability of high volume hybrid fiber reinforced concrete", Constr. Build. Mater., 21(6), 1149-1154. https://doi.org/10.1016/j.conbuildmat.2006.11.017.
  8. BSI-12390 (2001), BS EN 12390- Part 3: Testing hardened concrete: Compressive strength of test specimens, BSI, London, UK.
  9. ASTM-C1609 (2019), Standard test method for flexural performance of fiber-reinforced concrete (Using beam with third-point loading), ASTM International, West Conshohocken, PA, USA.
  10. Dos Anjos, M., Sales, A. and Andrade, N. (2017), "Blasted copper slag as fine aggregate in Portland cement concrete", J. Environ. Management, 196, 607-613. https://doi.org/10.1016/j.jenvman.2017.03.032.
  11. Edwin, R.S., Gruyaert, E. and De Belie, N. (2022), "Valorization of secondary copper slag as aggregate and cement replacement in ultra-high performance concrete", J. Build. Eng., 54, 104567. https://doi.org/10.1016/j.jobe.2022.104567.
  12. Elahi, A., Basheer, P., Nanukuttan, S. and Khan, Q. (2010), "Mechanical and durability properties of high performance concretes containing supplementary cementitious materials", Constr. Build. Mater., 24(3), 292-299. https://doi.org/10.1016/j.conbuildmat.2009.08.045.
  13. Feng, Y., Yang, Q., Chen, Q., Kero, J., Andersson, A., Ahmed, H., Engstrom, F. and Samuelsson, C. (2019), "Characterization and evaluation of the pozzolanic activity of granulated copper slag modified with CaO", J. Cleaner Product., 232, 1112-1120. https://doi.org/10.1016/j.jclepro.2019.06.062.
  14. Gao, S., Tian, W., Wang, L., Chen, P., Wang, X. and Qiao, J. (2010), Comparison of the mechanics and durability of hybrid fiber reinforced concrete and frost resistant concrete in bridge deck pavement, ICCTP 2010: Integrated Transportation Systems: Green, Intelligent, Reliable. https://doi.org/10.1061/41127(382).
  15. Ghalehnovi, M., Rakhshanimehr, M. and Khodabakhshian, A. (2022), "The effect of waste marble powder and silica fume on the mechanical, environmental and economic performance of concrete", Sharif J. Civil Eng., 37.2(4.1), 33-47. https://doi.org/10.24200/J30.2021.56505.2834.
  16. Gideon, A.M. and Milan, R. (2021), "Effects of nitinol on the ductile performance of ultra high ductility fibre reinforced cementitious composite", Case Studies in Constr. Mater., 15, e00582. https://doi.org/10.1016/j.cscm.2021.e00582.
  17. Huang, K. (2001), "Use of copper slag in cement production", Sichuan Cement, 4, 25-27.
  18. Jalal, M., Mansouri, E., Sharifipour, M. and Pouladkhan, A.R. (2012), "Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticles", Mater. Design, 34, 389-400. https://doi.org/10.1016/j.matdes.2011.08.037.
  19. Kakooei, S., Akil, H.M., Jamshidi, M. and Rouhi, J. (2012), "The effects of polypropylene fibers on the properties of reinforced concrete structures", Constr. Build. Mater., 27(1), 73-77. https://doi.org/10.1016/j.conbuildmat.2011.08.015.
  20. Kashyap, V.S., Sancheti, G. and Yadav, J.S. (2023), "Durability and microstructural behavior of nano Silica-marble dust concrete", Cleaner Mater., 7, 100165. https://doi.org/10.1016/j.clema.2022.100165.
  21. Kong, D., Su, Y., Du, X., Yang, Y., Wei, S. and Shah, S.P. (2013), "Influence of nano-silica agglomeration on fresh properties of cement pastes", Constr. Build. Mater., 43, 557-562. https://doi.org/10.1016/j.conbuildmat.2013.02.066.
  22. Le Hoang, A. and Fehling, E. (2017), "Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete", Constr. Build. Mater., 153, 790-806. https://doi.org/10.1016/j.conbuildmat.2017.07.130.
  23. Li, L., Huang, Z., Zhu, J., Kwan, A. and Chen, H. (2017), "Synergistic effects of micro-silica and nano-silica on strength and microstructure of mortar", Constr. Build. Mater., 140, 229-238. https://doi.org/10.1016/j.conbuildmat.2017.02.115.
  24. Lim, S., Lee, W., Choo, H. and Lee, C. (2017), "Utilization of high carbon fly ash and copper slag in electrically conductive controlled low strength material", Constr. Build. Mater., 157, 42-50. https://doi.org/10.1016/j.conbuildmat.2017.09.071.
  25. Mardani-Aghabaglou, A., Tuyan, M., Yilmaz, G., Arioz, O. and Ramyar, K. (2013), "Effect of different types of superplasticizer on fresh, rheological and strength properties of self-consolidating concrete", Constr. Build. Mater., 47, 1020-1025. https://doi.org/10.1016/j.conbuildmat.2013.05.105.
  26. Massana, J., Reyes, E., Bernal, J., Leon, N. and Sanchez-Espinosa, E. (2018), "Influence of nano-and micro-silica additions on the durability of a high-performance self-compacting concrete", Constr. Build. Mater., 165, 93-103. https://doi.org/10.1016/j.conbuildmat.2017.12.100.
  27. Mazaheripour, H., Ghanbarpour, S., Mirmoradi, S. and Hosseinpour, I. (2011), "The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete", Constr. Build. Mater., 25(1), 351-358. https://doi.org/10.1016/j.conbuildmat.2010.06.018.
  28. Mazloom, M., Allahabadi, A. and Karamloo, M. (2017), "Effect of silica fume and polyepoxide-based polymer on electrical resistivity, mechanical properties, and ultrasonic response of SCLC", Adv. Concrete Constr., 5(6), 587-611. https://doi.org/10.12989/acc.2017.5.6.587.
  29. Mazloom, M., Karimpanah, H. and Karamloo, M. (2020), "Fracture behavior of monotype and hybrid fiber reinforced self-compacting concrete at different temperatures", Adv. Concrete Constr., 9(4), 375-386. https://doi.org/10.12989/acc.2020.9.4.375.
  30. Mazloom, M. and Mirzamohammadi, S. (2021), "Fracture of fibre-reinforced cementitious composites after exposure to elevated temperatures", Mag. Concrete Res., 73(14), 701-713. https://doi.org/10.1680/jmacr.19.00401.
  31. Mazloom, M., Saffari, A. and Mehrvand, M. (2015), "Compressive, shear and torsional strength of beams made of self-compacting concrete", Comput. Concrete, 15(6), 935-950. https://doi.org/10.12989/cac.2015.15.6.935.
  32. Mazloom, M. and Salehi, H. (2018), The relationship between fracture toughness and compressive strength of self-compacting lightweight concrete, IOP Publishing. https://doi.org/10.1088/1757-899X/431/6/062007.
  33. Mazloom, M., Salehi, H., Gholipour, M., Akbari-Jamkarani, M. and Afzali, F. (2022), A Comprehensive Study of the Effects of Copper Slag on the Fresh and Hardened Properties of Different Cementitious Composites, Practice Periodical on Structural Design and Construction, 27(3), 05022003. https://doi.org/10.1061/(ASCE)SC.1943-5576.00007.
  34. Mazloom, M., Soltani, A., Karamloo, M., Hassanloo, A. and Ranjbar, A. (2018), "Effects of silica fume, superplasticizer dosage and type of superplasticizer on the properties of normal and self-compacting concrete", Adv. Mater. Res., 7(1), 45-72. https://doi.org/10.12989/amr.2018.7.1.045.
  35. Murari, K., Siddique, R. and Jain, K. (2015), "Use of waste copper slag, a sustainable material", J. Mater. Cycles Waste Management, 17(1), 13-26. https://doi.org/10.1007/s10163-014-0254-x.
  36. Nili, M. and Ehsani, A. (2015), "Investigating the effect of the cement paste and transition zone on strength development of concrete containing nanosilica and silica fume", Mater. Design, 75, 174-183. https://doi.org/10.1016/j.matdes.2015.03.024.
  37. Saha, S., Rajasekaran, C. and Vinay, K. (2017). "Use of concrete wastes as the partial replacement of natural fine aggregates in the production of concrete", Proceedings of the Global Civil Engineering Conference. https://doi.org/10.1007/978-981-10-8016-6_32.
  38. Salehi, H. and Mazloom, M. (2018), "Experimental and numerical studies of crack propagation in self-compacting lightweight concrete", Modares Mech. Eng., 18(6), 144-155.
  39. Salehi, H. and Mazloom, M. (2019), "Effect of magnetic-field intensity on fracture behaviors of self-compacting lightweight concrete", Mag. Concrete Res., 71(13), 665-679. https://doi.org/10.1680/jmacr.17.00418.
  40. Salehi, H. and Mazloom, M. (2019), "Opposite effects of ground granulated blast-furnace slag and silica fume on the fracture behavior of self-compacting lightweight concrete", Constr. Build. Mater., 222, 622-632. https://doi.org/10.1016/j.conbuildmat.2019.06.183.
  41. Salehi, H. and Mazloom, M. (2021), "Studying the effect of silica fume on the fracture toughness and fracture energy of self-compacting lightweight concrete", J. Civil Environ. Eng., 53(1), 139-151. DOI: https://doi.org/10.22034/JCEE.2021.43557.1985.
  42. Scrivener, K.L. and Kirkpatrick, R.J. (2008), "Innovation in use and research on cementitious material", Cement Concrete Res., 38(2), 128-136. https://doi.org/10.1016/j.cemconres.2007.09.025.
  43. Shajil, N., Srinivasan, S. and Santhanam, M. (2013), "Self-centering of shape memory alloy fiber reinforced cement mortar members subjected to strong cyclic loading", Mater. Struct., 46(4), 651-661. https://doi.org/10.1617/s11527-012-9923-1.
  44. Tangtakabi, A., Ramesht, M.H., Golsoorat Pahlaviani, A. and Pourrostam, T. (2022), "Optimum use of micro silica in reducing corrosion reinforcing steel of marine concrete structures", Amirkabir J. Civil Eng., 54(8), 2953-2968. https://doi.org/10.22060/CEEJ.2022.18954.7008.
  45. Tiwary, A.K. and Bhatia, S. (2022), "A study incorporating the influence of copper slag and fly ash substitutions in concrete", Mater. Today: Proceedings, 48, 1476-1483. https://doi.org/10.1016/j.matpr.2021.09.293.
  46. van Zijl, G.P., Wittmann, F.H., Oh, B.H., Kabele, P., Toledo Filho, R.D., Fairbairn, E.M., Slowik, V., Ogawa, A., Hoshiro, H. and Mechtcherine, V. (2012), "Durability of strain-hardening cement-based composites (SHCC)", Materials and structures. 45(10), 1447-1463. https://doi.org/10.1617/s11527-012-9845-y.
  47. Wang, Z., Zhang, T. and Zhou, L. (2016), "Investigation on electromagnetic and microwave absorption properties of copper slag-filled cement mortar", Cement Concrete Compos., 74, 174-181. https://doi.org/10.1016/j.cemconcomp.2016.10.003.
  48. Yu, K.Q., Yu, J.T., Dai, J.G., Lu, Z.D. and Shah, S.P. (2018), "Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers", Constr. Build. Mater., 158, 217-227. https://doi.org/10.1016/j.conbuildmat.2017.10.040.