Acknowledgement
The present Research has been conducted by the Research Grant of Kwangwoon University in 2023.
References
- Ahmed, A. S., Kumar, M., & Ali, M. A. M. (2020). Adoption of FinTech and Future Perspective: An Empirical Evidence from Bahrain on Digital Wallets. In 2020 International Conference on Decision Aid Sciences and Application (DASA) (pp. 751-755).
- Aizawa, A. (2003). An information-theoretic perspective of tf-idf measures. Information Processing & Management, 39(1), 45-65.
- Awotunde, J. B., et al. (2021). Fintech with Artificial Intelligence, Big Data, and Blockchain. In Springer (pp. 107-139).
- Blei, D. M., & Ng, A. Y. (2003). Latent Dirichlet allocation. The Journal of Machine Learning Research, 3, 993-1022.
- Das, S. (2019). Opportunities and challenges of FinTech. Keynote Address Delivered at NITI Aayog's Fin-Tech Conclave, New Delhi, 25(3).
- Goldstein, I., Jiang, W., & Karolyi, G. A. (2019). To Fintech and Beyond. The Review of Financial Studies, 32(5), 1647-1661.
- Ji, J. L., & Qiu, E. (2002). Study on Quotation and Citation Form of Network Document [J]. Information Science, 1.
- Ko, M.-S. (2017). Unstructured Data Processing Using Keyword-Based Topic-Oriented Analysis. Journal of the Korea Information Processing Society, 6(11), 521-526.
- Lee, H., & Kang, P. (2018). Identifying core topics in technology and innovation management studies: A topic model approach. Journal of Technology Transfer, 43(5), 1291-1317.
- Lee, I. S., Jang, J. H., & Yoo, K. H. (2017). Twitter Data Analysis System using LDA model. Proceedings of the Korea Information Processing Society Conference, 24(2), 389-390.
- Park, Y., Yoon, B., & Lee, S. (2005). The idiosyncrasy and dynamism of technological innovation across industries: Patent citation analysis. Technology in Society, 27(4), 471-485.
- Pompella, M., & Costantino, L. (2021). Fintech and Blockchain Based Innovation: Technology Driven Business Models and Disruption. In Springer (pp. 403-430).
- Pradha, S., Halgamuge, M. N., & Tran Quoc Vinh, N. (2019). Effective text data preprocessing technique for sentiment analysis in social media data. In 2019 11th International Conference on Knowledge and Systems Engineering (KSE) (pp. 1-8). Da Nang, Vietnam.
- Yan, E., & Ding, Y. (2009). Applying centrality measures to impact analysis: A coauthorship network analysis. Journal of the American Society for Information Science & Technology, 60(10), 2107-2118.
- Yeo, J.-S., & Jeong, Y. (2020). Pathway toward market entry of perovskite solar cells: A detailed study on the research trends and collaboration networks through bibliometrics. Energy Reports, 6(2), 2075-2085.
- Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159-175.
- Zhang, H., Daim, T., & Zhang, Y. P. (2021). Integrating patent analysis into technology roadmapping: A latent Dirichlet allocation based technology assessment and roadmapping in the field of Blockchain. Technological Forecasting & Social Change, 167, 1-13.