DOI QR코드

DOI QR Code

Accurate theoretical modeling and code prediction of the punching shear failure capacity of reinforced concrete slabs

  • Rajai Z. Al-Rousan (Department of Civil Engineering, Faculty of Engineering, Jordan University of Science and Technology) ;
  • Bara'a R. Alnemrawi (Department of Civil Engineering, Faculty of Engineering, Jordan University of Science and Technology)
  • Received : 2024.04.07
  • Accepted : 2024.08.03
  • Published : 2024.08.25

Abstract

A flat slab is a structural system where columns directly support it without the presence of beam elements. However, despite its wide advantages, this structural system undergoes a major deficiency where stresses are concentrated around the column perimeter, resulting in the progressive collapse of the entire structure as a result of losing the shear transfer mechanisms at the cracked interface. Predicting the punching shear capacity of RC flat slabs is a challenging problem where the factors contributing to the overall slab strength vary broadly in their significance and effect extent. This study proposed a new expression for predicting the slab's capacity in punching shear using a nonuniform concrete tensile stress distribution assumption to capture, as well as possible, the induced strain effect within a thick RC flat slab. Therefore, the overall punching shear capacity is composed of three parts: concrete, aggregate interlock, and dowel action contributions. The factor of the shear span-to-depth ratio (a_v/d) was introduced in the concrete contribution in addition to the aggregate interlock part using the maximum aggregate size. Other significant factors were considered, including the concrete type, concrete grade, size factor, and the flexural reinforcement dowel action. The efficiency of the proposed model was examined using 86 points of published experimental data from 19 studies and compared with five code standards (ACI318, EC2, MC2010, CSA A23.3, and JSCE). The obtained results revealed the efficiency and accuracy of the model prediction, where a covariance value of 4.95% was found, compared to (13.67, 14.05, 15.83, 19.67, and 20.45) % for the (ACI318, CSA A23.3, MC2010, EC2, and JSCE), respectively.

Keywords

Acknowledgement

The authors acknowledge the technical support provided by the Jordan University of Science and Technology (JUST).

References

  1. Al-Rousan, R.Z. and Bara'a, R.A. (2023), "Punching shear code provisions examination against the creation of an opening in existed RC flat slab of various sizes and locations", Struct., 49, 875-888. https://doi.org/10.1016/j.istruc.2023.02.007.
  2. Albrecht, U. (2002), "Design of flat slabs for punching - European and North American practices", Cem. Concrete Comp., 24(6), 531-538. https://doi.org/10.1016/S0958-9465(01)00069-5.
  3. Alnemrawi, B.R., Al-Rousan, R.Z. and Ababneh, A.N. (2023), "The structural behavior of heat-damaged flat slabs with openings of different sizes and locations", Arab. J. Sci. Eng., 49(4), 5403-5430. https://doi.org/10.1007/s13369-023-08411-6.
  4. Alnemrawi, B.R., Al-Rousan, R.Z. and Ababneh, A.N. (2024), "Punching shear behavior of strengthened and unstrengthened heat-damaged reinforced concrete flat slabs: Experimental and NLFEA study", Comput. Concrete, 34(6).
  5. Alnemrawi, B.R., Al-Rousan, R.Z. and Ababneh, A.N. (2024), "The role of CFRP strengthening in improving the punching shear behavior of heat-damaged flat slabs with openings of different sizes and locations", Eng. Fail. Anal., 160, 108208. https://doi.org/10.1016/j.engfailanal.2024.108208.
  6. Alrousan, R.Z. and Alnemrawi, B.R. (2022), "The influence of concrete compressive strength on the punching shear capacity of reinforced concrete flat slabs under different opening configurations and loading conditions", Struct., 44, 101-119. https://doi.org/10.1016/j.istruc.2022.07.091.
  7. Alrousan, R.Z. and Alnemrawi, B.R. (2022), "Punching shear behavior of FRP reinforced concrete slabs under different opening configurations and loading conditions", Case Studies Construc. Mater., 17, e01508. https://doi.org/10.1016/j.cscm.2022.e01508.
  8. Aurelio, M. (2008), "Punching Shear Strength of Reinforced Concrete Slabs without Transverse Reinforcement", ACI Struct. J., 105(4), 440-450. https://doi.ord/10.14359/19858.
  9. Aurelio, M. and Miguel Fernandez, R. (2008), "Shear strength of members without transverse reinforcement as function of critical shear crack width", ACI Struct. J., 105(2), 163-172. https://doi.org/10.14359/19731.
  10. Bamonte, P. and Felicetti, R. (2009), "Fire scenario and structural behaviour of underground parking lots exposed to fire", Applications of Structural Fire Engineering, Prague.
  11. Beton, C.E.-I.d. (1993), CEB-FIP model code 1990, Thomas Telford Publishing.
  12. Bui, T.T., Nana, W.S.A., Abouri, S., Limam, A., Tedoldi, B. and Roure, T. (2017), "Influence of uniaxial tension and compression on shear strength of concrete slabs without shear reinforcement under concentrated loads", Construct. Build. Mater., 146, 86-101. https://doi.org/10.1016/j.conbuildmat.2017.04.068.
  13. Chen, J., Zhang, R., Wang, Z. and Wu, S. (2023), "Punching shear behaviour of steel-concrete composite slab-column connections with spatial steel drop panel", Eng. Struct., 283, 115875. https://doi.org/10.1016/j.engstruct.2023.115875.
  14. Chen, S., Shi, X. and Qiu, Z. (2011), "Shear bond failure in composite slabs-a detailed experimental study", Steel Compos. Struct., 11(3), 233-250. https://doi.org/10.12989/scs.2011.11.3.233.
  15. Classen, M. and Kalus, M. (2023), "Punching shear response theory (PSRT) - A two degree of freedom kinematic theory for modeling the entire punching shear vs. deformation response of RC slabs and footings", Eng. Struct., 291, 116197. https://doi.org/10.1016/j.engstruct.2023.116197.
  16. Deifalla, A. (2021), "A mechanical model for concrete slabs subjected to combined punching shear and in-plane tensile forces", Eng. Struct., 231, 111787. https://doi.org/10.1016/j.engstruct.2020.111787.
  17. Ehab F. El-Salakawy, M.A.P. and Monir, H.S. (1999), "Reinforced concrete slab-column edge connections with openings", ACI Struct. J., 96(1), 79-87. https://doi.org/10.14359/598.
  18. Emori, K. (2003), "Strength and structural barrier function of steel channel-reinforced concrete composite slabs", Steel Compos. Struct., 3(4), 243-260. https://doi.org/10.12989/scs.2003.3.4.243.
  19. Code, P. (2005), Eurocode 2: design of concrete structures-part 1- 1: general rules and rules for buildings, British Standard Institution, London.
  20. Ghoreishi, M., Bagchi, A. and Sultan, M.A. (2015), "Punching shear behavior of concrete flat slabs in elevated temperature and fire", Adv. Struct. Eng., 18(5), 659-674. https://doi.org/10.1260/1369-4332.18.5.659.
  21. Grandic, D., Sculac, P. and Grandic, I.S. (2015), "Shear resistance of reinforced concrete beams in dependence on concrete strength in compressive struts", Tech. Gazette, 22(4), 925-934. https://doi.ord/10.17559/TV-20140708125658.
  22. Guan, H. (2009), "Prediction of punching shear failure behaviour of slab-edge column connections with varying opening and column parameters", Adv. Struct. Eng., 12(1), 19-36. https://doi.org/10.1260/136943309787522605.
  23. Guandalini, S. and Muttoni, A.J.T.R. (2004), "Symmetrical punching tests on slabs without transverse reinforcement", Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
  24. Ha, T., Lee, M.-H., Park, J. and Kim, D.-J. (2015), "Effects of openings on the punching shear strength of RC flat-plate slabs without shear reinforcement", Struct. Des. Tall Special Build., 24(15), 895-911. https://doi.org/10.1002/tal.1217.
  25. Ha, T., Lee, M.H., Park, J. and Kim, D.J. (2015), "Effects of openings on the punching shear strength of RC flat-plate slabs without shear reinforcement", Struct. Des. Tall Special Build., 24(15), 895-911. https://doi.org/10.1002/tal.1217.
  26. Hamrat, M., Boulekbache, B., Chemrouk, M. and Amziane, S. (2010), "Shear behaviour of RC beams without stirrups made of normal strength and high strength concretes", Adv. Struct. Eng., 13(1), 29-41. https://doi.org/10.1260/1369-4332.13.1.29.
  27. Helen, D. (1972), "Dowel action of reinforcement crossing cracks in concrete", ACI J. Proceed., 69(12), 754-757. https://doi.org/10.14359/11281.
  28. Hossin, M.A. (2007), "Crack analysis of reinforced concrete two-way slabs. Crack analysis of reinforced concrete two-way slabs", Research Report RCS01; Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland.
  29. Houde, J. and Mirza, M.S. (1974), "A finite element analysis of shear strength of reinforced concrete beams", ACI Symp. Publ., 42. https://doi.org/10.14359/17281.
  30. Huang, X.-N., Li, Q.-H., Tong, J.-Z., Xu, S.-L. and Lu, Y.-C. (2023), "Punching shear behavior and strength prediction of UHTCC-enhanced RC slab-column joints", Eng. Struct., 286, 116162. https://doi.org/10.1016/j.engstruct.2023.116162.
  31. Ismail, E.-S.I.M. (2018), "Non-linear finite element analysis of reinforced concrete flat plates with opening adjacent to column under eccentric punching loads", HBRC J., 14(3), 438-449. https://doi.org/10.1016/j.hbrcj.2018.01.001.
  32. Jimenez-Perez, R., Gergely, P. and White, R.N. (1978), "Shear transfer across cracks in reinforced concrete", Cornell Univ., Ithaca, NY, USA.
  33. Johnson, R.P. and Arnaouti, C. (1980), "Punching shear strength of concrete slabs subjected to in-plane biaxial tension", Mag. Concrete Res., 32(110), 45-50. https://doi.org/10.1680/macr.1980.32.110.45.
  34. Jurgen Einpaul, J.B.M.F.R. and Aurelio, M. (2016), "Study on influence of column size and slab slenderness on punching strength", ACI Struct. J., 113(1), 135-145. https://doi.org/10.14359/51687945.
  35. Kang, S.-M., Na, S.-J. and Hwang, H.-J. (2021), "Two-way shear strength of reinforced concrete transfer slab-column connections", Eng. Struct., 231, 111693. https://doi.org/10.1016/j.engstruct.2020.111693.
  36. Kinnunen, S. and Nylander, H.S.E. (1960), "Punching of concrete slabs without shear reinforcement", Transactions No. 158; Royal Institute of Technology, Stockholm, Sweden.
  37. Knyziak, P., Kowalski, R. and Krentowski, J.R. (2019), "Fire damage of RC slab structure of a shopping center", Eng. Fail. Anal., 97, 53-60. https://doi.org/10.1016/j.engfailanal.2018.12.002.
  38. Kueres, D. and Hegger, J. (2018), "Two-parameter kinematic theory for punching shear in reinforced concrete slabs without shear reinforcement", Eng. Struct., 175, 201-216. https://doi.org/10.1016/j.engstruct.2018.08.023.
  39. Li, K.K.L. (2000), "Punching shear strength of concrete slabs", McGill University, Montreal.
  40. Liu, T., Cakiroglu, C., Islam, K., Wang, Z. and Nehdi, M.L. (2024), "Explainable machine learning model for predicting punching shear strength of FRC flat slabs", Eng. Struct., 301, 117276. https://doi.org/10.1016/j.engstruct.2023.117276.
  41. Lopes, E. and Simoes, R. (2008), "Experimental and analytical behaviour of composite slabs", Steel Compos. Struct., 8(5), 361-388. https://doi.org/10.12989/scs.2008.8.5.361.
  42. Marzouk H, H.M. (2007), "Analysis of reinforced concrete two-way slabs", Research Report RCS01; Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland.
  43. Marzouk, H. and Hussein, A. (1992), "Experimental investigation on the behavior of high-strength concrete slabs", ACI Struct. J., 88(6). https://doi.org/10.14359/1261.
  44. Marzouk, R. and Rizk, E. (2009), "Punching analysis of reinforced concrete two-way slabs", Memorial University of Newfoundland St. John's, Newfoundland, Canada.
  45. Menetrey, P. (1996), "Analytical computation of the punching strength of reinforced concrete", ACI Struct. J., 93(5), 503-511. https://doi.org/10.14359/9708.
  46. Menetrey, P. (2002), "Synthesis of punching failure in reinforced concrete", Cement Concrete Compos., 24(6), 497-507. https://doi.org/10.1016/S0958-9465(01)00066-X.
  47. Michael P. Collins, P.T.Q. and Evan, C.B. (2020), "Shear behavior of thick slabs", ACI Struct. J., 117(4), 115-125. https://doi.org/10.14359/51724666.
  48. Moe, J.J.R. and Laboratories, D. (1961), "Shearing strength of reinforced concrete slabs and footings under concentrated loads", Development Department Bulletin No. D47; Portland Cement Association, Skokie.
  49. Mowrer, R.D. and Vanderbilt, M.D. (1967), "Shear strength of lightweight aggregate reinforced concrete flat plates", ACI J. Proceed., 64(11), 722-729. https://doi.org/10.14359/7601.
  50. Muttoni, A. and Schwartz, J. (1991), "Behavior of beams and punching in slabs without shear reinforcement", IABSE Colloq., 62, 703-708.
  51. Muttoni, A.J.B.-u.S. (2003), "Shear and punching strength of slabs without shear reinforcement", Beton- und Stahlbetonbau, 98(2), 74-84. https://doi.org/10.1002/best.200300400
  52. Pang, H., Wang, Z., Huang, C. and Pu, S. (2016), "Punching Shear Strength Model for RC Slab-Column Connection Based on Multiaxial Strength Theory of Concrete", International Symposium on Mechanical Engineering and Material Science, December.
  53. Pinho Ramos, A., Lucio, V.J.G. and Regan, P.E. (2011), "Punching of flat slabs with in-plane forces", Eng. Struct., 33(3), 894-902. https://doi.org/10.1016/j.engstruct.2010.12.010.
  54. Ramdane, K. (1996), "Punching Shear of High Performance Concrete Slabs", 4th International Symposium on Utilization of High-strength/High-performance concrete, Paris, Paris.
  55. Rankin, G.I.B. and Long, A.E. (1987), "Predicting the Punching Strength of Conventional Slab-Column Specimens", Proceedings of the Institution of Civil Engineers.
  56. Rasoul, Z.M.A. (2019), "Accuracy of concrete strength prediction behavior in simulating punching shear behavior of flat slab using finite element approach in Abaqus", Periodicals Eng. Natural Sci., 7(4), 1933-1949. https://doi.org/10.1680/iicep.1987.382.
  57. Regan, P., Walker, P. and Zakaria, K. (1979), "Tests of reinforced concrete flat slabs", CIRIA Project No. RP 220; Polytechnic of Central London.
  58. Richard, C.E. and Eivind, H. (1956), "Shearing strength of reinforced concrete slabs", ACI J. Proceed., 53(7), 29-58. https://doi.org/10.14359/11501.
  59. Rochdi, E.H., Bigaud, D., Ferrier, E. and Hamelin, P. (2006), "Ultimate behavior of CFRP strengthened RC flat slabs under a centrally applied load", Compos. Struct., 72(1), 69-78. https://doi.org/10.1016/j.compstruct.2004.10.017.
  60. Saravanan, M., Marimuthu, V., Prabha, P., Arul Jayachandran, S. and Datta, D. (2012), "Experimental investigations on composite slabs to evaluate longitudinal shear strength", Steel Compos. Struct., 13(5), 489-500. https://doi.org/10.12989/scs.2012.13.5.489.
  61. Seres, N. and Dunai, L. (2011), "Experimental and numerical studies on concrete encased embossments of steel strips under shear action for composite slabs with profiled steel decking", Steel Compos. Struct., 11(1), 39-58. https://doi.org/10.12989/scs.2011.11.1.039.
  62. Shaaban, A.M. and Gesund, H. (1994), "Punching shear strength of steel fiber reinforced concrete flat plates", ACI Struct. J., 91(4), 406-414. https://doi.org/10.14359/4145.
  63. Standard, B. (2004), Eurocode 2: Design of concrete structures-.
  64. Stefano Guandalini, O.L.B. and Aurelio, M. (2009), "Punching tests of slabs with low reinforcement ratios", ACI Struct. J., 106(1), 87-95. https://doi.org/10.14359/56287.
  65. Sundquist, H. and Kinnunen, S.J.B. (2004), "The effect of column head and drop panels on the punching capacity of flat slabs", Bulletin No. 82; Department of Civil and Architectural Engineering, Royal Institute of Technology, Stockholm.
  66. T. Paulay, R.P. and Phillips, M.H. (1974), "Horizontal construction joints in cast-in-place reinforced concrete", ACI Symp. Public., 42, 599-616. https://doi.org/10.14359/17303.
  67. Taylor, H. (1969), "Investigation of the dowel shear forces carried by the tensile steel in reinforced concrete beams", Technical Report 431; Cement and Concrete Association, London.
  68. Theodorakopoulos, D.D. and Swamy, R.N. (2002), "Ultimate punching shear strength analysis of slab-column connections", Cement Concrete Compos., 24(6), 509-521. https://doi.org/10.1016/S0958-9465(01)00067-1.
  69. Tolf, P.J.F.m.c.p.T.-B.B. (1988), Bulletin No. 146, Department of Structural Mechanics and Engineering. Royal Institute of Technology, Stockholm.
  70. Tomaszewicz, A. (1993), "Punching shear capacity of reinforced concrete slabs. High Strength Concrete SP2-Plates and Shells. Report 2.3", Report No. STF70A93082; SINTEF. Trondheim, Norway.
  71. Vintzeleou, E.N. and Tassios, T.P. (1986), "Mathematical models for dowel action under monotonic and cyclic conditions", Magazine Concrete Res., 38(134), 13-22. https://doi.org/10.1680/macr.1986.38.134.13.
  72. Walraven, J. and Van Der Horst, A. (2013), Fib Model Code for Concrete Structures 2010, John Wiley & Sons.
  73. Walraven, J.C. (1978), "Mechanisms of shear transfer in cracks in concrete", Stevin Laboratory Delft University of Technology.
  74. William, J.K. and Charles, W.T. (1966), "Contribution of longitudinal steel to shear resistance of reinforced concrete beams", ACI J. Proceed., 63(3), 325-344. https://doi.org/10.14359/7626.
  75. Yaser, M. and Aurelio, M. (2008), "Tests on the post-punching behavior of reinforced concrete flat slabs", Structural concrete laboratory of the Ecole Polytechnique.
  76. Zaharia, R., Vulcu, C., Vassart, O., Gernay, T. and Franssen, J.-M. (2013), "Numerical analysis of partially fire protected composite slabs", Steel Compos. Struct., 14(1), 21-39. https://doi.org/10.12989/scs.2013.14.1.021.
  77. Zdenek, P.B. and Jin-Keun, K. (1984), "Size effect in shear failure of longitudinally reinforced beams", ACI J. Proceed., 81(5), 456-468. https://doi.org/10.14359/10696.
  78. Zdenek, P.B. and Mohammed, T.K. (1991), "Size effect on diagonal shear failure of beams without stirrups", ACI Struct. J., 88(3), 268-276. https://doi.org/10.14359/3097.
  79. Zheng, B., Zheng, W., Cao, B. and Zhang, Y. (2023), "Nonlinear finite element analysis of non-symmetrical punching shear of rectangular flat slabs supported on square columns", Eng. Struct., 277, 115451. https://doi.org/10.1016/j.engstruct.2022.115451.