DOI QR코드

DOI QR Code

Effect of RBS on seismic performance of prefabricated steel-concrete composite joints

  • Zhen Zhu (School of Civil Engineering, Qingdao University of Technology) ;
  • Haitao Song (School of Civil Engineering, Qingdao University of Technology) ;
  • Mingchi Fan (School of Civil Engineering, Qingdao University of Technology) ;
  • Hao Yu (China Construction Engineering Group Shandong Co., Ltd) ;
  • Chenglong Wu (School of Civil Engineering, Qingdao University of Technology) ;
  • Chunying Zheng (School of Environmental and Municipal Engineering, Qingdao University of Technology) ;
  • Haiyang Duan (Zhongqing Jian'an Construction Group Co., Ltd) ;
  • Lei Wang (Qingdao Tengyuan Design Firm Co., Ltd)
  • 투고 : 2023.07.24
  • 심사 : 2024.08.06
  • 발행 : 2024.08.25

초록

To study the influence of different reduced beam section (RBS) on the mechanical performance of modular boltedwelded hybrid connection joints (MHCJs), this article uses ABAQUS to establish and verify the finite element model (FEM) of the test specimens on the basis of quasi-static test research. Based on, 14 joint models featuring different RBS are devised to evaluate their influence on seismic behavior, such as joint failure mode, bending moment (M)-rotation angle (θ) curve, ductility, and energy consumption. The results indicate that when the flange and web are individually weakened, they alleviate to some extent the concentrated stress of the core module (CM) and column end steel skeleton in the joint core area, but both increase the stress on the flange connecting plate (FCP). At the same time, the impact of both on seismic performance such as bearing capacity, stiffness, and energy consumption is relatively small. When simultaneously weakening the flange and web of the steel beam, forming plastic hinges at the weakened position of the beam end, significantly alleviated the stress concentration of the CM and the damage at the FCP, improving the overall deformation and energy consumption capacity of joints. But as the weakening size of the web increases, the overall bearing capacity of the joint shows a decreasing trend.

키워드

과제정보

This work was funded by the project ZR2021QE046 supported by Shandong Provincial Natural Science Foundation, the National Natural Science Foundation of China (52208482), and the Shandong Province Housing and Urban Rural Construction Science and Technology Plan Project (2024KYKF-JZGYH108).

참고문헌

  1. A.A. 358-16 (2016), Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications, AISC; Chicago, IL, USA.
  2. Abaqus V6.14. (2013), Analysis User's Manual. SIMULIA, Providence, IR, USA: Abaqus Inc., 2013.
  3. Ansari, M., Jeddi, M.Z., Badaruzzaman, W.H.W., Tahir, M.M., Osman, S.A. and Hosseinpour, E. (2021), "A numerical investigation on the through rib stiffener beam to concrete-filled steel tube column connections subjected to cyclic loading", J. Eng. Sci. Technol., 24(3), 728-735. https://doi.org/10.1016/j.jestch.2020.10.004.
  4. Cao, J.H., Hao, J.P., Xue, Q., Fan, C.L. and Sun, X.L. (2023), "Seismic behavior of wall-type spiral stirrups-confined RC column to steel beam joint", J. Constr. Steel. Res., 210, 108051. https://doi.org/10.1016/j.jcsr.2023.108051.
  5. Chen, H., Guo, Z.X., Basha, S.H. and Liu, Y. (2022), "Seismic behavior of RCS frame joints applied with high-strength bolts-end plate connection", J. Build. Eng., 63, 105455. https://doi.org/10.1016/j.jobe.2022.105455.
  6. Chu, L.S., Tian, Y., Li, D.D., He, Y.X. and Feng, H. (2020), "Shear behavior of steel reinforced concrete column-steel beam joints with or without reinforced concrete slab", J. Build. Eng., 35, 102063. https://doi.org/10.1016/j.jobe.2020.102063.
  7. Fasan, M., Bedon, C., Amadio, C. and Pecce, M.R. (2024), "Non-linear component-based modelling strategy for beam-to-column steel-concrete composite joints under seismic loads", J. Constr. Steel. Res., 212, 108314. https://doi.org/10.1016/j.jcsr.2023.108314.
  8. FEMA-350 (2000), Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, Washington D. C, USA.
  9. Feng, S.K., Guan, D.Z., Ni, L.Y., Lin, Y., Liu, Z.X., Guo, Z.X. and Li, G.J. (2022), "Experimental study on seismic behavior of joints connecting precast H-steel reinforced concrete beams and concrete-filled steel tube columns", J. Build. Eng., 45, 103444. https://doi.org/10.1016/j.jobe.2021.103444.
  10. GB50011-2010 (2010), Code for Seismic Design of Buildings, China Construction Industry Press; Beijing, China.
  11. GB50017-2017 (2017), Standard for Design of Steel Structures, China Construction Industry Press; Beijing, China.
  12. Habibi, A., Fanaie, N. and Shahbazpanahi, S. (2023), "Experimental and numerical investigation of I-beam to concrete-filled tube (CFT) column moment connections with pipe-stiffened internal diaphragm", J. Constr. Steel. Res., 200, 107648. https://doi.org/10.1016/j.jcsr.2022.107648.
  13. JGJ138-2016 (2016), Code for Design of Composite Structures, China Construction Industry Press; Beijing, China.
  14. Jiang, Z.Q., Kang, Y.T., Liu, X.C., Cheng, K.K. and Chen, X. (2020), "Experimental study of an earthquake-resilient prefabricated opening-web steel channel beam-to-column joint with flange cover plates", Eng. Struct., 221, 111054. https://doi.org/10.1016/j.engstruct.2020.111054.
  15. Jiang, Z.Q., Niu, Z.Y., Cheng, K.K., Yan, T. and Zhang, A.L. (2022), "Experimental study of earthquake-resilient high ductility prefabricated opening-web steel channel beam-column joint", J. Build. Eng., 49, 104041. https://doi.org/10.1016/j.jobe.2022.104041.
  16. Lan, T., Li, R., Jiang, Z.Q., Zhang, H. and Wang, H.W. (2020), "Experimental study of earthquake-resilient prefabricated opening-web steel channel beam-column joint with double FCPs", J. Constr. Steel. Res., 175, 106356. https://doi.org/10.1016/j.jcsr.2020.106356.
  17. Li, D.X., Brian, U. and Wang, J. (2019), "Behaviour and design of high-strength steel beam-to-column joints", Steel Compos. Struct., 31(3), 303-317. https://doi.org/10.12989/scs.2019.31.3.303.
  18. Li, W., Xu, L.F. and Qian, W.W. (2020), "Seismic performance of concrete-encased CFST column to steel beam joints with different connection details", J. Eng. Struct., 204, 109875. https://doi.org/10.1016/j.engstruct.2019.109875.
  19. Liang, G., Lu, Z.H., Guo, H.C., Liu, Y.H., Yang, D.X., Li, S. and Pan, X.Z. (2021), "Experimental and numerical investigation on seismic performance of extended stiffened end-plate joints with reduced beam section using high strength steel", J. Thin-Wall. Struct., 169, 108434. https://doi.org/10.1016/j.tws.2021.108434.
  20. Mansouri, A., Shakiba, M.R. and Fereshtehpour, E. (2021), "Two novel corrugated web reduced beam section connections for steel moment frames", J. Build. Eng., 43, 103187. https://doi.org/10.1016/j.jobe.2021.103187.
  21. Nazaralizadeh, H., Ronagh, H., Memarzadeh, P. and Behnamfar, F. (2020), "Cyclic performance of bolted end-plate RWS connection with vertical-slits", J. Constr. Steel. Res., 173, 106236. https://doi.org/10.1016/j.jcsr.2020.106236.
  22. Ozkilic, Y.O. (2020), "A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections", Steel Compos. Struct., 35(3), 353-370. https://doi.org/10.12989/scs.2020.35.3.353.
  23. Qiao, H.Y., Xie, X., Zheng, J.H., Xing, Z.Q., Chen, Y. and Wei, J.P. (2023), "Progressive collapse behavior of beam-to-column connections involving flange openings", J. Eng. Struct., 284, 115972. https://doi.org/10.1016/j.engstruct.2023.115972.
  24. Ramirez, O.C., Areiza, P.G., Gutierrez, A.A.D., Ramirez, J.L.D., Cano, R.E.B. and Gonzales, L.F.E. (2022), "Seismic behavior of a steel beam-to-concrete-filled steel tubular column connection using external diaphragms", J. Appl. Sci., 12(7), 3618. https://doi.org/ 10.3390/app12073618.
  25. Razavi, S.A., Kandi, A.H., Alimardani, M. and Jovaini, E. (2023), "Tube-in-tube rigid beam to CFT column connection in moment-resisting frames: An experimental study", J. Soil Dyn. Earthquake Eng., 171, 107901. https://doi.org/10.1016/j.soildyn.2023.107901.
  26. Saeedi, H., Erfani, S. (2023), "Cyclic behavior of a novel bolted beam-to-box column connection with reduced beam section", Structures., 53, 1369-1388. https://doi.org/10.1016/j.istruc.2023.05.016.
  27. Wang, J., Brian, U. and Li, D.X. (2019), "Behaviour of large fabricated stainless steel beam-to-tubular column joints with extended end plates", Steel Compos. Struct., 32(1), 141-156. https://doi.org/10.12989/scs.2019.32.1.141.
  28. Wang, Q.W., Shi, Q.X. and Tian, H.H. (2015), "Seismic behavior of steel reinforced concrete (SRC) joints with new-type section steel under cyclic loading", Steel Compos. Struct., 19(6), 1561-1580. http://dx.doi.org/10.12989/scs.2015.19.6.1561.
  29. Wang, Q.W., Shi, Q.X. and Tian, H.H. (2016), "Experimental study on shear capacity of SRC joints with different arrangement and sizes of cross-shaped steel in column", Steel Compos. Struct., 21(2), 267-287. http://dx.doi.org/10.12989/scs.2016.21.2.267.
  30. Wang, W.Z., Yang, B.Z., Huang, Y.Q. and Ji, H.T. (2012), "Low-cycle reversed loading tests on joints of H-style steel beam-square steel tubular column filled with concrete with opening holes at beam flanges and web", J. Build. Struct., 33(3), 96-103. https://doi.org/10.14006/j.jzjgxb.2012.03.013.
  31. Wu, C.L., Kan, J.C., Liu, J.M. and Mou, B. (2021a), "Non-linear FEA of mechanical properties of modular prefabricated steel-concrete composite joints", Steel Compos. Struct., 40(4), 533-554. https://doi.org/10.12989/scs.2021.40.4.533.
  32. Wu, C.L., Kan, J.C., Wang, Q.H., Liu, J.M. and Li, Z.Q. (2021b), "FEM analysis of the modular prefabricated steel-concrete composite beam-column internal joint under reciprocating action", Steel Compos. Struct., 41(1), 45-64. https://doi.org/10.12989/scs.2021.41.1.045.
  33. Wu, C.L., Liu, J.M., Tan, W.Y. and Wang, P.F. (2020), "Seismic behavior of composite interior joints of prefabricated H-shaped steel reinforced concrete column-steel beam", Structures., 23, 558-572. https://doi.org/10.1016/j.istruc.2019.11.008.
  34. Wu, C.L., Liu, L.G., Mou, B., Pan, W. and Liu, J.M. (2023), "Experimental and theoretical study on seismic behavior of connection between prefabricated steel-reinforced concrete column and base", J. Eng. Struct., 274, 115169. https://doi.org/10.1016/j.engstruct.2022.115169.
  35. Yang, I.S., Lee, D., Ju, H., Lee, S.J. and Oh, J.Y. (2022), "Steel-concrete composite beam-column connections utilizing prefabricated permanent steel form", J. Build. Eng., 46, 103836. https://doi.org/10.1016/j.jobe.2021.103836.
  36. Yang, L., Peng, L. and Ban, H.Y. (2024), "Experimental study on demountable and reusable steel beam-to-column joints with bolted-pinned connections", J. Constr. Steel. Res., 214, 108450. https://doi.org/10.1016/j.jcsr.2023.108450.
  37. Yu, S.J., Wu, C.L., Zhou, F., Wang, P.F., Zhao, K.C. and Liu, J.M. (2020), "Experimental study and numerical simulation of a new prefabricated SRC column to steel beam composite joint", Structures., 27, 999-1010. https://doi.org/10.1016/j.istruc.2020.06.027.
  38. Zhang, X.H., Zheng, S.S. and Zhao, X.R. (2019), "Seismic performance of steel beam-to-column moment connections with different structural forms", J. Constr. Steel. Res., 15, 130-142. https://doi.org/10.1016/j.jcsr.2019.03.028.