Acknowledgement
본 논문을 심사 해주신 심사위원님들께 감사드린다. 본 연구는 충남대학교 학술 연구비에 의해 지원되었다.
References
- A.I. de Castro, J. Torres-Sanchez, J.M. Pena, F.M. Jimenez-Brenes, O. Csillik and F. Lopez-Granados (2018) An automatic random forest-OBIA algorithm for early weed mapping between and within crop rows using UAV imagery. Remote Sens., v.10, n.2, p.1-21. doi: 10.3390/rs10020285
- Andrew W Western, Sen-Lin Zhou, Rodger B Grayson, Thomas A McMahon, Gunter Bloschl, David J Wilson (2004) Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. Journal of Hydrology, v.286(1-4), p.113-134, ISSN 0022-1694, https://doi.org/10.1016/j.jhydrol.2003.09.014.
- Breiman, L. (2001) Random forests. Machine Learning, v.45, p.5-32. doi: 10.1023/A:1010933404324
- C. Nolet, A. Poortinga, P. Roosjen, H. Bartholomeus and G. Ruessink (2014) Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand. PLoS One, v.9, p.e112151-9. doi: 10.1371/journal.pone.0112151
- Choe, E.Y., Hong, S.Y., Kim, K.W., Kim, Y.H. and Zhang, Y.S. (2010) Monitoring of Soil Properties using VNIR Spectroscopy. Korean Society of Soil Science and Fertilizer, p.94-103 (in Korean).
- D.B. Lobell and G.P. Asner (2002) Moisture effects on soil reflectance. Soil Sci. Soc. Am. J., v.66, p.722-727. doi: 10.2136/sssaj2002.7220
- Ditzler, C., K. Scheffe, and H.C. Monger (2017) Soil science division staff. Soil Survey Manual, 603.
- Dopper, V., Rocha, A.D., Berger, K., Granzig, T., Verrelst, J., Kleinschmit, B. and Forster, M. (2022) Estimating soil moisture content under grassland with hyperspectral data using radiative transfer modelling and machine learning. International Journal of Applied Earth Observation and Geoinformation, v.110, 102817. doi: 10.1016/j.jag.2022.102817
- E.J.M. Carranza and A.G. Laborte (2015) Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Comput. Geosci., v.74, p.60-70. doi: 10.1016/j.cageo.2014.10.004
- Fushiki, T. (2011) Estimation of prediction error by using K-fold cross-validation. Statistics and Computing, v.21, p.137-146. doi:10.1007/s11222-009-9153-8
- Ge, X., Ding, J., Jin, X., Wang, J., Chen, X., Li, X., Liu, J. and Xie, B. (2021) Estimating Agricultural Soil Moisture Content through UAV-Based Hyperspectral Images in the Arid Region. Remote Sens., v.13, 1562. https://doi.org/10.3390/rs13081562.
- Guo, L., Chehata, N., Mallet, C. and Boukir, S. (2011) Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests. ISPRS J. Photogramm. Remote Sens., v.66, p.56-66. doi: 10.1016/j.isprsjprs.2010.08.007
- H. Kim, J. Yu, L. Wang, C. Park, H.S. Han and S.-G. Jang (2022) Analysis on Effective UAS Survey Conditions for Classification of Coastal Sediments. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v.15, p.1163-1173. doi: 10.1109/JSTARS.2021.3136228.
- H. Shin, J. Yu, Y. Jeong, L. Wang and D.-Y. Yang (2017) Casebased regression models defining the relationships between moisture content and shortwave infrared reflectance of beach sands. IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens., v.10, n.10, p.4512-4521. doi: 10.1109/JSTARS.2017.2723912
- Haein Shin, Jaehyung Yu, Jieun Kim, Dongyoon Yang and Gilljae Lee (2015). Mapping the moisture content of coastal sediments using ASTER data for spectroscopic and mineralogical analyses: a case study in South Korea. Remote Sensing Letters, v.6(6), p.488-497. doi:10.1080/2150704X.2015.1049379.
- J. Shin, J. Yu, L. Wang, J. Seo, H.H. Huynh and G. Jeong (2023) Spectral Indices to Assess Pollution Level in Soils: Case-Adaptive and Universal Detection Models for Multiple Heavy Metal Pollution Under Laboratory Conditions. IEEE Transactions on Geoscience and Remote Sensing, v.61, p.1-16, n.4504516. doi: 10.1109/TGRS.2023.3297126.
- Jeon, E., Kim, K., Cho, S. and Kim, S. (2019) A Comparative Study of Absolute Radiometric Correction Methods for Drone-borne Hyperspectral Imagery. Korean Journal of Remote Sensing, v.35(2), p.203-215. https://doi.org/10.7780/KJRS.2019.35.2.1.
- Kokaly, R.F. and Clark, R.N. (1999) Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment, v.67(3), p.267-287. doi: 10.1016/S0034-4257(98)00084-4
- Lee, K.Y., K.C. Lee, J.E. Kim, S. Kim, J.M. Ahn and T.H. Im (2015) A study on the nutrient release characteristics from sediments in Nak-dong River. Journal of Korean Society on Water Environment, v.31(6), p.644-652. doi: 10.15681/KSWE.2015.31.6.644
- Lobell, D.B. and Asner, G.P. (2002) Moisture effects on soil reflectance. Soil Science Society of America Journal, v.66(3), p.722-727. doi: 10.2136/sssaj2002.7220
- Luo, W., Xu, X., Liu, W., Liu, M., Li, Z., Peng, T., Xu, C., Zhang, Y. and Zhang, R. (2019) UAV based soil moisture remote sensing in a karst mountainous catchment. Catena, v.174, p.478-489. https://doi.org/10.1016/j.catena.2018.11.017.
- Mccoll, K.A., Alemohammad, S.H., Akbar, R., Konings, A.G., Yueh, S. and Entekhabi, D. (2017) The global distribution and dynamics of surface soil moisture. Nat. Geosci., v.10(2), p.100-104. https://doi.org/10.1038/ngeo2868.
- Minghan Cheng, Xiyun Jiao, Yadong Liu, Mingchao Shao, Xun Yu, Yi Bai, Zixu Wang, Siyu Wang, Nuremanguli Tuohuti, Shuaibing Liu, Lei Shi, Dameng Yin, Xiao Huang, Chenwei Nie, and Xiuliang Jin (2022) Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning. Agricultural Water Management, v.264, 107530, ISSN 0378-3774. https://doi.org/10.1016/j.agwat.2022.107530.
- Peretyazhko, T. and Sposito, G. (2005) Iron(III) reduction and phosphorous solubilization in humid tropical forest soils. Geochimica et Cosmochimica Acta, v.69(14), p.3643-3652. doi:10.1016/j.gca.2005.03.045
- Robinson, D.A., Jones, S.B., Wraith, J.M., Or, D. and Friedman, S.P. (2003) A Review of Advances in Dielectric and Electrical Conductivity Measurement in Soils Using Time Domain Reflectometry. Vadose Zone Journal, v.2, p.444-475. https://doi.org/10.2136/vzj2003.4440.
- Rodriguez, J.D., Perez, A. and Lozano, J.A. (2009) Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, v.32(3), p.569-575. doi: 10.1109/TPAMI.2009.187
- Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M. and Rigol-Sanchez, J.P. (2012) An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens., v.67, p.93-104. doi: 10.1016/j.isprsjprs.2011.11.002
- Rosa Agliata, Thom A. Bogaard, Roberto Greco, Aldo Minardo, Luigi Mollo and Susan C. (2019) Steele-Dunne, Non-invasive water content estimation in a tuff wall by DTS. Construction and Building Materials, v.197, p.821-829. ISSN 0950-0618. https://doi.org/10.1016/j.conbuildmat.2018.11.250.
- Sherman, D.M. and Waite, T.D. (1985) Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. American Mineralogist, v.70, p.1262-1269.
- Topp, G.C., J.L. Davis, and A.P. Annan (1980) Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res., v.16(3), p.574-582. doi:10.1029/WR016i003p00574.
- Tsai, F. and Philpot, W. (1998) Derivative analysis of hyperspectral data. Remote Sensing of Environment, v.66(1), p.41-51. doi:10.1016/S0034-4257(98)00032-7
- Weidong, L., F. Baret, G. Xingfa, T. Qingxi, Z. Lanfen, and Z. Bing (2002) Relating Soil Surface Moisture to Reflectance. Remote Sensing of Environment, v.81(2-3), p.238-246. doi:10.1016/S0034-4257(01)00347-9.
- Z. Yin, T. Lei, Q. Yan, Z. Chen and Y. Dong (2013) A near-infrared reflectance sensor for soil surface moisture measurement. Comput. Electron. Agriculture, v.99, p.101-107. doi: 10.1016/j.compag.2013.08.029