DOI QR코드

DOI QR Code

The Effects of Organic, Inorganic, and Microbiological Stabilizers on the Transfer of Arsenic and Heavy Metals to Rice Plant

유기, 무기 및 미생물학적 안정화제가 비소 및 중금속의 벼 전이에 미치는 영향

  • Hui-Yeon Kim (Department of Energy and Resources Engineering, Chonnam National University) ;
  • Ga-Hyun Park (Department of Energy and Resources Engineering, Chonnam National University) ;
  • Yejin Choi (Department of Energy and Resources Engineering, Chonnam National University) ;
  • Eui-Jeong Hwang (Department of Energy and Resources Engineering, Chonnam National University) ;
  • Daeung Yoon (Department of Energy and Resources Engineering, Chonnam National University) ;
  • Jong-Un Lee (Department of Energy and Resources Engineering, Chonnam National University)
  • 김희연 (전남대학교 에너지자원공학과) ;
  • 박가현 (전남대학교 에너지자원공학과) ;
  • 최예진 (전남대학교 에너지자원공학과) ;
  • 황의정 (전남대학교 에너지자원공학과) ;
  • 윤대웅 (전남대학교 에너지자원공학과) ;
  • 이종운 (전남대학교 에너지자원공학과)
  • Received : 2024.07.18
  • Accepted : 2024.08.21
  • Published : 2024.08.30

Abstract

To assess the effectiveness of stabilization techniques on the transfer of As and heavy metals in soil to rice plant, pot experiments were conducted using organic (biochar), inorganic (limestone-steel slag mixture), and microbiological (sulfate-reducing bacteria, SRB) stabilizers. The results showed that microbiological treatments, particularly when SRB and SO42- were co-injected, achieved higher stabilization efficiencies for Pb, Cu, and Cd in soil solution by the end of the experiments (153 days). The transfer of Pb, Zn, Cu, and Cd to the rice stems, leaves, and husks was reduced across all stabilization treatments. Notably, in husks, the stabilization efficiencies of Pb, Zn, Cu, and Cd ranged from 30% to 65% for organic stabilizers and 23% to 69% for inorganic stabilizers, surpassing those achieved with microbiological stabilizers. This study highlighted the potential of SRB as an effective alternative or supplementary stabilizer to conventional options such as limestone, steel slag, and biochar in reducing the transfer of heavy metals to crops in paddy soils.

안정화 공법이 토양 내 As 및 중금속의 작물 전이에 미치는 영향을 평가하기 위해 안정화제를 적용한 오염 토양에 벼를 재배하는 포트 실험을 수행하였다. 안정화제는 유기 안정화제로 바이오차, 무기 안정화제로 석회석·제강슬래그 혼합물, 미생물학적 안정화제로 황산염환원균(SRB)을 사용하였다. 토양수 분석 결과, 실험종료(153일) 시점에 미생물학적 안정화제 조건에서 Pb, Cu, Cd의 높은 안정화 효율을 보였으며, SRB와 SO42-가 함께 주입된 조건에서 더 높은 효율을 나타내었다. 안정화제 투입 조건에서 벼의 줄기, 잎, 왕겨로의 Pb, Zn, Cu, Cd의 전이가 감소하였으며, 특히 왕겨에서 Pb, Zn, Cu, Cd의 안정화 효율은 유기 안정화제가 30~65%, 무기 안정화제가 23~69%로 미생물학적 안정화제보다 높은 안정화 효율을 보였다. 이 연구는 논토양에서 작물로의 중금속 전이를 저감할 때, 널리 사용되는 안정화제인 석회석, 제강슬래그, 바이오차의 대체 또는 보조 안정화제로서 SRB가 효과적으로 적용될 수 있는 가능성을 나타낸다.

Keywords

Acknowledgement

이 연구는 농촌진흥청(과제번호: PJ015053032023) 및 전남대학교 학술연구비(과제번호: 2020-1946)의 지원에 의하여 수행되었습니다.

References

  1. Alfaraas, A.M.J., Khairiah, J., Ismail, B.S., and Noraini, T. (2016) Effects of heavy metal exposure on the morphological and microscopical characteristics of paddy plant. Journal of Environmental Biology, v.37(5), p.955-963.
  2. Arao, T., Ishikawa, S., Murakami, M., Abe, K., Maejima, Y., and Makino, T. (2010) Heavy metal contamination of agricultural soil and countermeasures in Japan. Paddy and Water Environment, v.8, p.247-257. doi: 10.1007/s10333-010-0205-7
  3. Barton, L.L. and Hamilton, W.A. (2007) Sulphate-Reducing Bacteria: Environmental and Engineered Systems, Cambridge University Press, United Kingdom, p.405-434. doi: 10.1017/CBO9780511541490
  4. Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M.B., and Scheckel, K. (2014) Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize? Journal of Hazardous Materials, v.266, p.141-166. doi: 10.1016/j.jhazmat.2013.12.018
  5. Busenberg, E. and Clemency, C.V. (1973) Determination of the cation exchange capacity of clays and soils using an ammonia electrode. Clays and Clay Minerals, v.21(4), p.213-217. doi: 10.1346/ccmn.1973.0210403
  6. Choi, Y.-L., Kim, D.-S., Kang, T.-J., Yang, J.-K., and Chang, Y.-Y. (2021) Immobilization of As and Pb in contaminated soil using bead type amendment prepared by iron nanoparticles impregnated biochar. Journal of Environmental Impact Assessment, v.30(4), p.247-257. doi: 10.14249/eia.2021.30.4.247
  7. Choi, Y., Hwang, E.-J., Hwang, H., Han, H.-J., and Lee, J.-U. (2023) Heavy metal stabilization in deep agricultural soils using sulfate-reducing bacteria. Journal of the Korean Society of Mineral and Energy Resources Engineers, v.60(3), p.151-160. doi: 10.32390/ksmer.2023.60.3.151
  8. Ghuge, S.A., Nikalje, G.C., Kadam, U.S., Suprasanna, P., and Hong, J.C. (2023) Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation. Journal of Hazardous Materials, v.450(15), 131039. doi: 10.1016/j.jhazmat.2023.131039
  9. Han, H.-J., Lee, J.-U., Ko, M.-S., Choi, N.C., Kwon, Y.H., Kim, B.K., and Chon, H.-T. (2009) Bioleaching of heavy metals from shooting range soil using a sulfur-oxidizing bacteria Acidithiobacillus thiooxidans. Economic and Environmental Geology, v.42(5), p.457-469.
  10. Jang, H.-Y., Chon, H.-T., and Lee, J.-U. (2009) In-situ precipitation of arsenic and copper in soil by microbiological sulfate reduction. Economic and Environmental Geology, v.42(5), p.445-455.
  11. Kalavrouziotis, I.K., Koukoulakis, P., and Kostakioti, E. (2012) Assessment of metal transfer factor under irrigation with treated municipal wastewater. Agricultural Water Management, v.103, p.114-119. doi: 10.1016/j.agwat.2011.11.002
  12. Kapoor, R.T. and Zdarta, J. (2024) Fabrication of engineered biochar for remediation of toxic contaminants in soil matrices and soil valorization. Chemosphere, v.358, 142101. doi: 10.1016/j.chemosphere.2024.142101
  13. Ko, M.-S., Lee, J.-U., Park, H.-S., Shin, J.-S., Bang, K.-M., Chon, H.-T., Lee, J.-S., and Kim, J.-Y. (2009) Geomicrobiological behavior of heavy metals in paddy soil near abandoned Au-Ag mine supplied with carbon sources. Economic and Environmental Geology, v.42(5), p.413-426.
  14. Ko, M.-S., Park, H.-S., and Lee, J.-U. (2016) Arsenic removal from mine drainage by biogenic FeS and feasibility study of sulfate reducing bioreactor. Journal of the Korean Society of Mineral and Energy Resources Engineers, v.53(6), p.555-561. doi: 10.12972/ksmer.2016.53.6.555
  15. Koh, I.-H., Lee, S.-H., Lee, W.-S., and Chang, Y.-Y. (2013) Assessment on the transition of arsenic and heavy metal from soil to plant according to stabilization process using limestone and steelmaking slag. The Journal of Korean Society of Soil and Groundwater Environment, v.18(7), p.63-72. doi: 10.7857/JSGE.2013.18.7.063
  16. Koh, I.-H., Kim, E.-Y., Kwon, Y.S., Ji, W.H., Joo, W., Kim, J., Shin, B.S., and Chang, Y.-Y. (2015) Partitioning of heavy metals between rice plant and limestone-stabilized paddy soil contaminated with heavy metals. The Journal of Korean Society of Soil and Groundwater Environment, v.20(4), p.90-103. doi: 10.7857/JSGE.2015.20.4.090
  17. Koh, I.-H., Kim, J., Kim, G.-S., and Ji, W.H. (2017) Transfer of arsenic and heavy metals from soils to rice plant under different drainage conditions. The Journal of Korean Society of Soil and Groundwater Environment, v.22(6), p.12-21. doi: 10.7857/JSGE.2017.22.6.012
  18. Koh, I.-H., Kim, J.-E., Park, S.-Y., Choi, Y.-L., Kim, D.-S., Moon, D.H., and Chang, Y.-Y. (2022) Stabilization of As and heavy metals in farmland soil using iron nanoparticles impregnated biochar. The Journal of Korean Society of Soil and Groundwater Environment, v.27(6), p.1-10. doi: 10.7857/JSGE.2022.27.6.001
  19. Kozlowski, T.T. (1984) Flooding and Plant Growth. Academic Press, USA, p.9-41.
  20. Lee, H. and Lee, M. (2012) Investigation of the rice plant transfer and the leaching characteristics of copper and lead for the stabilization process with a pilot scale test. Economic and Environmental Geology, v.45(3), p.255-264.
  21. Lee, J.-U. and Chon, H.-T. (2000) Bacterial effects on geochemical behavior of elements: an overview on recent geomicrobiological issues. Economic and Environmental Geology, v.33(5), p.353-365.
  22. Li, J.X., Yang, X.E., He, Z.L., Jilani, G., Sun, C.Y., and Chen, S.M. (2007) Fractionation of lead in paddy soils and its bioavailability to rice plants. Geoderma, v.141, p.174-180. https://doi.org/10.1016/j.geoderma.2007.05.006
  23. Lovley, D.R. (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiological Reviews, v.55(2), p.259-287. doi: 10.1128/mmbr.55.2.259-287.1991
  24. Lv, Y., Zhu, X., Zhang, M., Liu, X., and Wang, J. (2022) In-situ bioremediation of multiple heavy metals contaminated farmland soil by sulfate-reducing bacteria. Polish Journal of Environmental Studies, v.31(2), p.1747-1755. doi: 10.15244/pjoes/141326
  25. Malidareh, H.B., Mahvi, A.H., Yunesian, M., Alimohammadi, M., and Nazmara, S. (2014) Effect of fertilizer application on paddy soil heavy metals concentration and groundwater in north of Iran. Middle-East Journal of Scientific Research, v.20(12), p.1721-1727. doi: 10.5829/idosi.mejsr.2014.20.12.13633
  26. Mao, C., Song, Y., Chen, L., Ji, J., Li, J., Yuan, X., Yang, Z., Ayoko, G.A., Frost, R.L., and Theiss, F. (2019) Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. Catena, v.175, p.339-348. doi: 10.1016/j.catena.2018.12.029
  27. MOE (Ministry of Environment) (2022) Environmental Statistics Yearbook 2022, Ministry of Environment, Sejong, Korea, p.376-377.
  28. MFDS (Ministry of Food and Drug Safety) (2023) https://various.foodsafetykorea.go.kr/fsd accessed on 2023.09.27.
  29. Park, S.-W., Yang, J.-S., Ryu, S.-W., Kim, D.-Y., Shin, J.-D., Kim, W.-I., Choi, J.-H., Kim, S.-L., and Saint, A.F. (2009) Uptake and translocation of heavy metals to rice plant on paddy soils in "top-rice" cultivation areas. Korean Journal of Environmental Agriculture, v.28(2), p.131-138. doi: 10.5338/KJEA.2009.28.2.131
  30. Park, H.-S., Ko, M.-S., Lee, S.-H., Hong, J.-H., Cho, S.-H., Yu, J.-Y., Jo, J.-H., and Lee, J.-U. (2016) Activity evaluation of sulfate reducing bacteria for the sulfate removal in the mine drainage. Journal of the Korean Society of Mineral and Energy Resources Engineers, v. 53(5), p.387-397. doi: 10.12972/ksmer.2016.53.5.387
  31. Pugazhendhi, A., Govindasamy, C., and Sharma, A. (2024) Heavy metal accumulation in root and shoot tapioca plant biomass grown in agriculture land situated around the magnesite mine tailings. Environmental Research, v.257, 119287. doi: 10.1016/j.envres.2024.119287
  32. Satpathy, D., Reddy, M.V., and Dhal, S.P. (2014) Risk assessment of heavy metals contamination in paddy soil, plants, and grains (Oryza sativa L.) at the east coast of India. Biomed Research International, v.2014, p.1-11. doi: 10.1155/2014/545473
  33. Shah, N., Irshad, M., Hussain, A., Mehmood, A., Murad, W., Qadir, M., Awais, M., Shah, M., and Khan, N. (2023) The deteriorating effects of cadmium accumulation on the yield and quality of maize crops. South African Journal of Botany, v.160, p.732-738. doi: 10.1016/j.sajb.2023.07.050
  34. Wang, X., Cai, D., Ji, M., Chen, Z., Yao, L., and Han, H. (2022a) Isolation of heavy metal-immobilizing and plant growth-promoting bacteria and their potential in reducing Cd and Pb uptake in water spinach. Science of the Total Environment, v.819(1), 153242. doi: 10.1016/j.scitotenv.2022.153242
  35. Xu, X., Wang, P., Zhang, J., Chen, C., Wang, Z., Kopittke, P.M., Kretzschmar, R., and Zhao, F.J. (2019) Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction. Environmental pollution, v.251. p.952-960. doi: 10.1016/j.envpol.2019.05.086
  36. Yang, Z., Yang, F., Liu, J.-L., Wu, H.-T., Yang, H., Shi, Y., Liu, J., Zhang, Y.-F., Luo, Y.-R., Chen, K.-M. (2022) Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation. Science of The Total Environment, v.809(25), 151099. doi: 10.1016/j.scitotenv.2021.151099
  37. Yun, S.-W. and Yu, C. (2012) Changes in phytoavailability of heavy metals by application of limestone in the farmland soil nearby abandoned metal mine and the accumulation of heavy metals in crops. Journal of the Korean Society of Agricultural Engineers, v.54(3), p.1-9. doi: 10.5389/KSAE.2012.54.3.001
  38. Zakaria, Z., Zulkafflee, N.S., Redzuan, N.A.M., Selamat, J., Ismail, M.R., Praveena, S.M., Toth, G., and Razis, A.F.A. (2021) Understanding potential heavy metal contamination, absorption, translocation and accumulation in rice and human health risks. Plants, v.10(6), 1070. doi: 10.3390/plants10061070
  39. Zhang, W., Alakangas, L., Wei, Z., and Long, J. (2016) Geochemical evaluation of heavy metal migration in Pb-Zn tailings covered by different topsoils. Journal of Geochemical Exploration, v.165, p.134-142. doi: 10.1016/j.gexplo.2016.03.010
  40. Zhou, Q., Wang, X., Liang, R., and Wu, Y. (2003) Effects of cadmium and mixed heavy metals on rice growth in Liaoning, China. Soil and Sediment Contamination, v.12, p.851-864. doi: 10.1080/714037719