Acknowledgement
이 연구는 농촌진흥청(과제번호: PJ015053032023) 및 전남대학교 학술연구비(과제번호: 2020-1946)의 지원에 의하여 수행되었습니다.
References
- Alfaraas, A.M.J., Khairiah, J., Ismail, B.S., and Noraini, T. (2016) Effects of heavy metal exposure on the morphological and microscopical characteristics of paddy plant. Journal of Environmental Biology, v.37(5), p.955-963.
- Arao, T., Ishikawa, S., Murakami, M., Abe, K., Maejima, Y., and Makino, T. (2010) Heavy metal contamination of agricultural soil and countermeasures in Japan. Paddy and Water Environment, v.8, p.247-257. doi: 10.1007/s10333-010-0205-7
- Barton, L.L. and Hamilton, W.A. (2007) Sulphate-Reducing Bacteria: Environmental and Engineered Systems, Cambridge University Press, United Kingdom, p.405-434. doi: 10.1017/CBO9780511541490
- Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M.B., and Scheckel, K. (2014) Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize? Journal of Hazardous Materials, v.266, p.141-166. doi: 10.1016/j.jhazmat.2013.12.018
- Busenberg, E. and Clemency, C.V. (1973) Determination of the cation exchange capacity of clays and soils using an ammonia electrode. Clays and Clay Minerals, v.21(4), p.213-217. doi: 10.1346/ccmn.1973.0210403
- Choi, Y.-L., Kim, D.-S., Kang, T.-J., Yang, J.-K., and Chang, Y.-Y. (2021) Immobilization of As and Pb in contaminated soil using bead type amendment prepared by iron nanoparticles impregnated biochar. Journal of Environmental Impact Assessment, v.30(4), p.247-257. doi: 10.14249/eia.2021.30.4.247
- Choi, Y., Hwang, E.-J., Hwang, H., Han, H.-J., and Lee, J.-U. (2023) Heavy metal stabilization in deep agricultural soils using sulfate-reducing bacteria. Journal of the Korean Society of Mineral and Energy Resources Engineers, v.60(3), p.151-160. doi: 10.32390/ksmer.2023.60.3.151
- Ghuge, S.A., Nikalje, G.C., Kadam, U.S., Suprasanna, P., and Hong, J.C. (2023) Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation. Journal of Hazardous Materials, v.450(15), 131039. doi: 10.1016/j.jhazmat.2023.131039
- Han, H.-J., Lee, J.-U., Ko, M.-S., Choi, N.C., Kwon, Y.H., Kim, B.K., and Chon, H.-T. (2009) Bioleaching of heavy metals from shooting range soil using a sulfur-oxidizing bacteria Acidithiobacillus thiooxidans. Economic and Environmental Geology, v.42(5), p.457-469.
- Jang, H.-Y., Chon, H.-T., and Lee, J.-U. (2009) In-situ precipitation of arsenic and copper in soil by microbiological sulfate reduction. Economic and Environmental Geology, v.42(5), p.445-455.
- Kalavrouziotis, I.K., Koukoulakis, P., and Kostakioti, E. (2012) Assessment of metal transfer factor under irrigation with treated municipal wastewater. Agricultural Water Management, v.103, p.114-119. doi: 10.1016/j.agwat.2011.11.002
- Kapoor, R.T. and Zdarta, J. (2024) Fabrication of engineered biochar for remediation of toxic contaminants in soil matrices and soil valorization. Chemosphere, v.358, 142101. doi: 10.1016/j.chemosphere.2024.142101
- Ko, M.-S., Lee, J.-U., Park, H.-S., Shin, J.-S., Bang, K.-M., Chon, H.-T., Lee, J.-S., and Kim, J.-Y. (2009) Geomicrobiological behavior of heavy metals in paddy soil near abandoned Au-Ag mine supplied with carbon sources. Economic and Environmental Geology, v.42(5), p.413-426.
- Ko, M.-S., Park, H.-S., and Lee, J.-U. (2016) Arsenic removal from mine drainage by biogenic FeS and feasibility study of sulfate reducing bioreactor. Journal of the Korean Society of Mineral and Energy Resources Engineers, v.53(6), p.555-561. doi: 10.12972/ksmer.2016.53.6.555
- Koh, I.-H., Lee, S.-H., Lee, W.-S., and Chang, Y.-Y. (2013) Assessment on the transition of arsenic and heavy metal from soil to plant according to stabilization process using limestone and steelmaking slag. The Journal of Korean Society of Soil and Groundwater Environment, v.18(7), p.63-72. doi: 10.7857/JSGE.2013.18.7.063
- Koh, I.-H., Kim, E.-Y., Kwon, Y.S., Ji, W.H., Joo, W., Kim, J., Shin, B.S., and Chang, Y.-Y. (2015) Partitioning of heavy metals between rice plant and limestone-stabilized paddy soil contaminated with heavy metals. The Journal of Korean Society of Soil and Groundwater Environment, v.20(4), p.90-103. doi: 10.7857/JSGE.2015.20.4.090
- Koh, I.-H., Kim, J., Kim, G.-S., and Ji, W.H. (2017) Transfer of arsenic and heavy metals from soils to rice plant under different drainage conditions. The Journal of Korean Society of Soil and Groundwater Environment, v.22(6), p.12-21. doi: 10.7857/JSGE.2017.22.6.012
- Koh, I.-H., Kim, J.-E., Park, S.-Y., Choi, Y.-L., Kim, D.-S., Moon, D.H., and Chang, Y.-Y. (2022) Stabilization of As and heavy metals in farmland soil using iron nanoparticles impregnated biochar. The Journal of Korean Society of Soil and Groundwater Environment, v.27(6), p.1-10. doi: 10.7857/JSGE.2022.27.6.001
- Kozlowski, T.T. (1984) Flooding and Plant Growth. Academic Press, USA, p.9-41.
- Lee, H. and Lee, M. (2012) Investigation of the rice plant transfer and the leaching characteristics of copper and lead for the stabilization process with a pilot scale test. Economic and Environmental Geology, v.45(3), p.255-264.
- Lee, J.-U. and Chon, H.-T. (2000) Bacterial effects on geochemical behavior of elements: an overview on recent geomicrobiological issues. Economic and Environmental Geology, v.33(5), p.353-365.
- Li, J.X., Yang, X.E., He, Z.L., Jilani, G., Sun, C.Y., and Chen, S.M. (2007) Fractionation of lead in paddy soils and its bioavailability to rice plants. Geoderma, v.141, p.174-180. https://doi.org/10.1016/j.geoderma.2007.05.006
- Lovley, D.R. (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiological Reviews, v.55(2), p.259-287. doi: 10.1128/mmbr.55.2.259-287.1991
- Lv, Y., Zhu, X., Zhang, M., Liu, X., and Wang, J. (2022) In-situ bioremediation of multiple heavy metals contaminated farmland soil by sulfate-reducing bacteria. Polish Journal of Environmental Studies, v.31(2), p.1747-1755. doi: 10.15244/pjoes/141326
- Malidareh, H.B., Mahvi, A.H., Yunesian, M., Alimohammadi, M., and Nazmara, S. (2014) Effect of fertilizer application on paddy soil heavy metals concentration and groundwater in north of Iran. Middle-East Journal of Scientific Research, v.20(12), p.1721-1727. doi: 10.5829/idosi.mejsr.2014.20.12.13633
- Mao, C., Song, Y., Chen, L., Ji, J., Li, J., Yuan, X., Yang, Z., Ayoko, G.A., Frost, R.L., and Theiss, F. (2019) Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. Catena, v.175, p.339-348. doi: 10.1016/j.catena.2018.12.029
- MOE (Ministry of Environment) (2022) Environmental Statistics Yearbook 2022, Ministry of Environment, Sejong, Korea, p.376-377.
- MFDS (Ministry of Food and Drug Safety) (2023) https://various.foodsafetykorea.go.kr/fsd accessed on 2023.09.27.
- Park, S.-W., Yang, J.-S., Ryu, S.-W., Kim, D.-Y., Shin, J.-D., Kim, W.-I., Choi, J.-H., Kim, S.-L., and Saint, A.F. (2009) Uptake and translocation of heavy metals to rice plant on paddy soils in "top-rice" cultivation areas. Korean Journal of Environmental Agriculture, v.28(2), p.131-138. doi: 10.5338/KJEA.2009.28.2.131
- Park, H.-S., Ko, M.-S., Lee, S.-H., Hong, J.-H., Cho, S.-H., Yu, J.-Y., Jo, J.-H., and Lee, J.-U. (2016) Activity evaluation of sulfate reducing bacteria for the sulfate removal in the mine drainage. Journal of the Korean Society of Mineral and Energy Resources Engineers, v. 53(5), p.387-397. doi: 10.12972/ksmer.2016.53.5.387
- Pugazhendhi, A., Govindasamy, C., and Sharma, A. (2024) Heavy metal accumulation in root and shoot tapioca plant biomass grown in agriculture land situated around the magnesite mine tailings. Environmental Research, v.257, 119287. doi: 10.1016/j.envres.2024.119287
- Satpathy, D., Reddy, M.V., and Dhal, S.P. (2014) Risk assessment of heavy metals contamination in paddy soil, plants, and grains (Oryza sativa L.) at the east coast of India. Biomed Research International, v.2014, p.1-11. doi: 10.1155/2014/545473
- Shah, N., Irshad, M., Hussain, A., Mehmood, A., Murad, W., Qadir, M., Awais, M., Shah, M., and Khan, N. (2023) The deteriorating effects of cadmium accumulation on the yield and quality of maize crops. South African Journal of Botany, v.160, p.732-738. doi: 10.1016/j.sajb.2023.07.050
- Wang, X., Cai, D., Ji, M., Chen, Z., Yao, L., and Han, H. (2022a) Isolation of heavy metal-immobilizing and plant growth-promoting bacteria and their potential in reducing Cd and Pb uptake in water spinach. Science of the Total Environment, v.819(1), 153242. doi: 10.1016/j.scitotenv.2022.153242
- Xu, X., Wang, P., Zhang, J., Chen, C., Wang, Z., Kopittke, P.M., Kretzschmar, R., and Zhao, F.J. (2019) Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction. Environmental pollution, v.251. p.952-960. doi: 10.1016/j.envpol.2019.05.086
- Yang, Z., Yang, F., Liu, J.-L., Wu, H.-T., Yang, H., Shi, Y., Liu, J., Zhang, Y.-F., Luo, Y.-R., Chen, K.-M. (2022) Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation. Science of The Total Environment, v.809(25), 151099. doi: 10.1016/j.scitotenv.2021.151099
- Yun, S.-W. and Yu, C. (2012) Changes in phytoavailability of heavy metals by application of limestone in the farmland soil nearby abandoned metal mine and the accumulation of heavy metals in crops. Journal of the Korean Society of Agricultural Engineers, v.54(3), p.1-9. doi: 10.5389/KSAE.2012.54.3.001
- Zakaria, Z., Zulkafflee, N.S., Redzuan, N.A.M., Selamat, J., Ismail, M.R., Praveena, S.M., Toth, G., and Razis, A.F.A. (2021) Understanding potential heavy metal contamination, absorption, translocation and accumulation in rice and human health risks. Plants, v.10(6), 1070. doi: 10.3390/plants10061070
- Zhang, W., Alakangas, L., Wei, Z., and Long, J. (2016) Geochemical evaluation of heavy metal migration in Pb-Zn tailings covered by different topsoils. Journal of Geochemical Exploration, v.165, p.134-142. doi: 10.1016/j.gexplo.2016.03.010
- Zhou, Q., Wang, X., Liang, R., and Wu, Y. (2003) Effects of cadmium and mixed heavy metals on rice growth in Liaoning, China. Soil and Sediment Contamination, v.12, p.851-864. doi: 10.1080/714037719