DOI QR코드

DOI QR Code

고준위방사성폐기물 심층처분 부지 수리 지질 안전 규제를 위한 국내 지질환경 수리 특성 평가

Evaluation of Hydrogeological Characteristic of Natural Barrier in Korea for Establishing Safety Guidelines of Deep Geological High-Level Radioactive Waste Disposal Site

  • 소수완 (경북대학교 지질학과) ;
  • 정지호 (경북대학교 지질학과) ;
  • 박재성 (경북대학교 지질학과) ;
  • 이형목 (경북대학교 지질학과) ;
  • 이수비 (경북대학교 지질학과) ;
  • 김수진 (경북대학교 지질학과) ;
  • 쎈다음바키 (경북대학교 지질학과) ;
  • 정진아 (경북대학교 지질학과)
  • Suwan So (Department of Geology, Kyungpook National University) ;
  • Jiho Jeong (Department of Geology, Kyungpook National University) ;
  • Jaesung Park (Department of Geology, Kyungpook National University) ;
  • Hyeongmok Lee (Department of Geology, Kyungpook National University) ;
  • Subi Lee (Department of Geology, Kyungpook National University) ;
  • Sujin Kim (Department of Geology, Kyungpook National University) ;
  • Sinda Mbarki (Department of Geology, Kyungpook National University) ;
  • Jina Jeong (Department of Geology, Kyungpook National University)
  • 투고 : 2024.08.05
  • 심사 : 2024.08.22
  • 발행 : 2024.08.30

초록

본 연구에서는 국내 고준위방사성폐기물 심층처분용 천연방벽의 수리특성 안전 기준을 평가하기 위해 심부 지질환경 수리지질 특성 평가를 수행하였다. 특히, 국내 지질환경에 적합한 심도에 따른 수리전도도와 투수계수의 분포와 추세를 평가하였으며, 이를 위해, 지하수 개발 및 관리 목적으로 수집된 다양한 현장 수리시험 자료가 사용되었다. 국내 환경에 적합한 심도-수리특성 관계 모델을 개발하기 위하여 다양한 해외 연구사례를 검토하고 심도에 따른 수리전도도 및 투수계수 추세를 설명하는 대표 모델을 확보 및 연구에 적용하였다. 국내에 적합한 수리특성 관계 모델 개발에는 확보된 자료가 포함하는 다양한 요인의 불확실성을 고려하기 위하여 앙상블 회귀분석을 적용하였다. 연구 결과, 기존 해외의 심도-수리특성 관계 모델이 국내 지질환경의 수리지질 특성을 적절히 설명하는 것을 확인할 수 있었으며, 스웨덴, 독일, 캐나다 등의 해외 국가가 제시하는 선호 수리특성 기준을 고려하였을 때, 국내 환경 또한 이에 적합한 지질환경이 존재할 가능성이 높음을 확인하였다. 또한, 저투수환경을 지시하는 수리특성 기준을 적용하였을 때, 처분고 건설에 적합한 환경이 존재할 가능성이 300m 이상의 심도부터 증가함을 보여주었으며, 500m 이상의 심도에서 단열이 지하수 흐름에 미치는 영향력이 낮을 수 있음을 보여주었다. 본 연구는 국제 규제 지침에 맞춰 국내 천연방벽의 수리지질학적 안전 기준을 수립하기 위한 기초정보로 활용될 수 있을 것이다.

This study assessed the hydrogeological properties of the deep geological environment to develop safety criteria for the natural barriers used in the deep geological disposal of high-level radioactive waste in Korea. The assessment focused on the distribution and trends of hydraulic conductivity and permeability properties appropriate for the domestic geological environment, using various in-situ hydraulic test data collected for groundwater development and management. To develop a depth-hydrogeological property relationship model suitable for domestic conditions, the study reviewed various international research examples and applied a representative model that explains the trends of hydraulic conductivity and permeability with depth. The development of the model suitable for Korea involved applying ensemble regression analysis to account for the uncertainty of various factors in the collected data. The results confirmed that existing international depth-hydrogeological property relationship models adequately describe the characteristics of the domestic geological environment. Considering the preferred hydrogeological criteria suggested by countries like Sweden, Germany, and Canada, there is a high likelihood that a suitable geological environment exists in Korea. Additionally, the application of hydrogeological criteria indicative of low-permeability environments showed that suitable conditions for disposal construction increase at depths greater than 300 m, where the influence of fractures on groundwater flow might be minimal at depths exceeding 500 m. This research can serve as foundational information for establishing hydrogeological safety standards for natural barriers in Korea according to international regulatory guidelines.

키워드

과제정보

이 논문은 정부(원자력안전위원회)의 재원으로 사용후 핵연료관리핵심기술개발사업단 및 원자력안전재단의 지원을 받아 수행된 연구사업이며(No.1075001193), 2024년도 정부(교육과학기술부)의 재원으로 한국연구재단의 지원을 받아 연구되었습니다(NRF-202400341207). 이 외에도 한국수자원공사 및 한국지질자원연구원의 자료제공으로 연구를 수행할 수 있었으며, 이들 기관의 귀중한 도움과 협조에 진심으로 감사드립니다.

참고문헌

  1. Achtziger-Zupancic, P., Loew, S. and Mariethoz, G. (2017) A new global database to improve predictions of permeability distribution in crystalline rocks at site scale. Journal of Geophysical Research: Solid Earth, v.122(5), p.3513-3539. doi: 10.1002/2017JB014106 
  2. ANDRA. (2005) Phenomenological evolution of a geological repository 
  3. ANDRA[Website]. (2024. Jul 22) https://international.andra.fr/projects/cigeo/protection-most-hazardous-radioactive-waste/geological-disposal-protection 
  4. Bear. (1972) Dynamics of Fluids in Porous Media. Courier Corporation. 
  5. BGE. (2020) Sub-areas Interim Report pursuant to Section 13 StandAG 
  6. Birkholzer, J., Houseworth, J. and Tsang, C.F. (2012) Geologic disposal of high-level radioactive waste: Status, key issues, and trends. Annual Review of Environment and Resources, v.37(1), p.79-106. doi: 10.1146/annurev-environ-090611-143314 
  7. Brown, G., Wyatt, J.L., Tino, P. and Bengio, Y. (2005) Managing diversity in regression ensembles. Journal of Machine Learning Research, v.6(9). 
  8. Choi, J., Chae, B.G., Kihm, Y.H., Park, E.S., Hyun, S., Kim, H.C., ... and Suk, H. (2017) Suggestion of site investigation method for HLW disposal facility. Journal of the Korean Society of Mineral and Energy Resources Engineers, v.54(4), p.303-318. doi: 10.12972/ksmer.2017.54.4.303 
  9. Dou, Z., Huang, X., Wan, W., Zeng, F. and Wang, C. (2024) Development and Application of a New Exponential Model for Hydraulic Conductivity with Depth of Rock Mass. Water, v.16(5), 778. doi: 10.3390/w16050778 
  10. Freeze and Cherry. (1979) Physical Properties and Principles. Groundwater. Englewood Cliffs, NJ: Prentice-Hall. 
  11. Gascoyne, M. (1987) Saline groundwaters and brines in plutons in the Canadian Shield. Saline Water and Gasses in Crystalline Rocks, p.53-68. 
  12. Hubert, M. and Van der Veeken, S. (2008) Outlier detection for skewed data. Journal of Chemometrics: A Journal of the Chemometrics Society, v.22(3-4), p.235-246. 
  13. IAEA. (1981) Recommendations on Underground Disposal of Radioactive Wastes, Basic Guidance. Safety Series No. 54 
  14. IAEA. (2000) Safety of Nuclear Power Plants: Design. No. NS-R-1 
  15. IAEA. (2011) Geological Disposal Facilities for Radioactive Waste. No. SSG-14 
  16. Jackson, T.R. and Fenelon, J.M. (2022) Relation of hydraulic conductivity to depth, alteration, and rock type in the volcanic rocks of Pahute Mesa, Nevada, USA. Hydrogeology Journal, v.30(8), p.2417-2432. doi: 10.1007/s10040-022-02571-9 
  17. Jeong, J., Park, E., Emelyanova, I., Pervukhina, M., Esteban, L. and Yun, S.T. (2021) Application of conditional generative model for sonic log estimation considering measurement uncertainty. Journal of Petroleum Science and Engineering, v.196, 108028. doi: 10.1016/j.petrol.2020.108028 
  18. Jung, H., Kim, H.J., Cheong, J.Y., Lee, E.Y. and Yoon, J.H. (2013) Analysis of siting criteria of overseas geological repository (II): Hydrogeology. Journal of Nuclear Fuel Cycle and Waste Technology (JNFCWT), v.11(3), p.253-257. doi: 10.7733/jnfcwtk.2013.11.3.253 
  19. KAERI. (2014) Development of technology for characterization of geological environment in KURT. KAERI/RR-3890/2014 
  20. KHNP[Website]. (2024, Jul 22) https://npp.khnp.co.kr/board/view.khnp?boardId=BBS_0000015&menuCd=DOM_00000010 3008002000&startPage=1&dataSid=10448 
  21. KIGAM. (2019) Hydrogeological investigation of sites for highlevel waste disposal. 
  22. KIGAM. (2021) Research on rock properties in deep environment for HLW geological disposal. GP2020-002-2021 
  23. Kim, E., Kihm, Y.H., Cheon, D.S., Hyun, S.P., Jeon, J.S., Kim, H.C., ... and Choi, S. (2020) Development of geoscientific site assessment factors for the deep geological disposal of HLW in South Korea. Journal of The Korean Society of Mineral and Energy Resources Engineers, v.57(2), p.215-233. doi: 10.32390/ksmer.2020.57.2.215 
  24. Kim, K.S., Kim, C.S. and Bae, D.S. (2002) Estimation of the Effective Hydraulic Conductivity in the Granite Area as an Equivalent Continuum Medium. The Journal of Engineering Geology, v.12(3), p.319-332. 
  25. KORAD[Website]. (2024, Jul 22) https://www.korad.or.kr/webzine/202312/sub2-4.jsp 
  26. Kuang, X. and Jiao, J.J. (2014) An integrated permeability-depth model for Earth's crust. Geophysical Research Letters, v.41(21), p.7539-7545. doi: 10.1002/2014GL061999 
  27. Lehmann, R. (2013) 3σ-Rule for Outlier Detection from the Viewpoint of Geodetic Adjustment. J. Surv. Eng., v.139, p.157-165. doi: 10.1061/(ASCE)SU.1943-5428.0000112 
  28. Manning, C.E. and Ingebritsen, S.E. (1999) Permeability of the continental crust: Implications of geothermal data and metamorphic systems. Reviews of Geophysics, v.37(1), p.127-150. doi: 10.1029/1998RG900002 
  29. Martin Nascimento, G.F., Wurtz, F., Kuo-Peng, P., Delinchant, B. and Jhoe Batistela, N. (2021) Outlier Detection in Buildings' Power Consumption Data Using Forecast Error. Energies, v.14(24), 8325. doi: 10.3390/en14248325 
  30. Merle C. Potter, D.C. Wiggert, Midhat Hondzo. (2001) Mechanics of Fluids. Brooks Cole Thompson Learning. 
  31. NEA. (2019) International Features, Events and Processees (IFEP) List for the Deep Geological Disposal of Radioactive Waste. NEA/RWM/R(2019)1 
  32. Nelder, J.A. and Mead, R. (1965) A simplex method for function minimization. The Computer Journal, v.7(4), p.308-313. doi:10.1093/comjnl/7.4.308 
  33. Neuzil, C.E. (1986) Groundwater flow in low-permeability environments. Water Resources Research, v.22(8), p.1163-1195. doi: 10.1029/WR022i008p01163 
  34. NUMO. (2002) Evaluation Factors for Qualification; Siting Factors for the Selection of Preliminary Investigation Areas 
  35. Piscopo, V., Baiocchi, A., Lotti, F., Ayan, E.A., Biler, A.R., Ceyhan, A.H., ... and Taskin, M. (2018). Estimation of rock mass permeability using variation in hydraulic conductivity with depth: experiences in hard rocks of western Turkey. Bulletin of Engineering Geology and the Environment, v.77(4), p.1663-1671. doi: 10.1007/s10064-017-1058-8 
  36. POSIVA. (2000) The site selection process for a spent fuel repository in Finland - Summaryreport. POSIVA 2000-15 
  37. POSIVA. (2010) Models and Data Report 2010. POSIVA-10-01 
  38. R. ADAM DASTRUP, MA, GISP. (2020). Physical Geography and Natural Disasters 
  39. Saar, M.O. and Manga, M. (2004) Depth dependence of permeability in the Oregon Cascades inferred from hydrogeologic, thermal, seismic, and magmatic modeling constraints. Journal of Geophysical Research: Solid Earth, 109(B4). 
  40. Sandia National Labs. (2013) Generic Deep Geologic Disposal Safety Case. SAND2013-0974 
  41. Savchenko, A.V., Evstigneev, D.S. and Tsupov, M.N. (2019) Numerical modeling of eccentric mass rotation in chamber filled with fluid. In IOP Conference Series: Earth and Environmental Science (Vol. 262, No. 1, p. 012061). IOP Publishing. 
  42. SKB. (2000) What requirements does the KBS-3 repository make on the host rock.Geoscientific suitability indicators and criteria for siting and site evaluation. TR-00-12 
  43. SKB. (2006a) Data Report for the Safety Assessment SR-Can. TR06-25 
  44. SKB. (2006b) Long-term safety for KBS-3 repositories at Fosmark and Laxemar - a first evaluation: Main report of the SR-Can project. TR-06-09 
  45. US NRC, 10 CFR Part 960 
  46. 산업통상사업부. (2021) 제2차 고준위방사성폐기물 관리 기본계획(안) 
  47. 한국원자력환경공단. (2016) 사용후핵연료 처분