DOI QR코드

DOI QR Code

Preliminary Study on the Jinju Formation in the Gyeongsang Basin to Evaluate Host Rock for High-level Radioactive Waste Geological Disposal: Focusing on Lithological and Mineralogical Characteristics

고준위방사성폐기물 지층처분 암종 평가를 위한 경상분지 진주층 예비연구: 암상 및 광물학적 특성을 중심으로

  • Sung Kyung Hong (Department of Geology, Kangwon National University) ;
  • Kwangmin Jin (Geology & Space Division, Korea Institute of Geoscience and Mineral Resources)
  • 홍성경 (강원대학교 지질학과) ;
  • 진광민 (한국지질자원연구원 국토우주지질연구본부)
  • Received : 2024.04.17
  • Accepted : 2024.07.05
  • Published : 2024.08.30

Abstract

The geological disposal of high-level radioactive waste (HLW) involves permanently isolating the wastes in stable geological formations deep underground. Mudstone (siltstone and claystone) containing abundant clay minerals is proposed as a host rock for geological disposal of HLW because clay minerals have low permeability and high ion sorption/exchange capacity. Despite the widespread occurrence of sedimentary basins in Korea, there is a lack of evaluation of mudstone as host rocks for geological disposal. In this study, we utilized the JBH-1 borehole (7-754 m) obtained from the Jinju Formation to investigate the distribution trend and mineral compositions of mudstone. Additionally, we conducted comparative analyses with the Opalinus Clay in Switzerland considered as host rock of geological disposal of HLW. Claystone containing more than 40% clay minerals exhibit thick layers primarily in the upper section (7-350 m) of the JBH-1 borehole. While the clay minerals content of claystone does not show significant variation with depth, there are differences in the characteristics of feldspar and carbonate minerals. These mineralogical variations can led change in pore water chemistry and rock mechanical properties. The clay minerals content of claystone in the Jinju Formation is similar to that of the Opalinus Clay. However, there are notable differences in clay minerals composition. While the Opalinus Clay contains smectite-illite mixed-layer minerals, the Jinju Formation are dominated by illite indicating higher burial temperatures. This information will be useful for studying the host rock of HLW geological disposal site in Korea.

고준위방사성폐기물(High-level radioactive waste, HLW) 지층처분은 지하 심부의 안정한 지층에 폐기물을 영구 격리하는 것이다. 전 세계적으로 고준위방사성폐기물의 지층처분 암종으로 결정질암과 더불어 낮은 투수성을 가지며 이온을 흡착하여 핵종의 이동을 억제할 수 있는 점토광물을 다량 포함하는 이암(실트암과 점토암)이 고려되거나 선정 되고 있다. 국내의 다수 육상퇴적분지에 이암이 분포되어 있으나 지층처분 암종 평가를 위한 암상 및 광물학적 연구는 매우 부족한 상황이다. 본 연구에서는 한국지질자원연구원에서 지층처분 암종 평가를 위하여 시추한 진주층 시추공(JBH-1, 7-754 m)의 이암의 분포 양상과 광물 조성을 연구 하였다. 더불어 고준위방사성폐기물 처분장으로 선정되어 다학제적 연구가 진행 중인 스위스 Opalinus Clay와 비교 분석하였다. 40% 이상의 점토광물을 포함하는 점토암은 진주층 시추공의 상부(7-350 m)에 두꺼운 두께로 다수 협재하는 특징을 보인다. 진주층 점토암의 점토광물 특성은 심도에 따른 변화를 보이지 않으나 장석 및 탄산염 광물의 함량과 조성은 차이를 보인다. 이러한 광물 특성 변동은 핵종 거동에 영향을 미치는 공극수의 조성과 암석역학적 특성 등에 심도별 차이를 야기할 수 있다. 진주층 점토암의 점토광물 함량은 Opalinus Clay와 유사하나 점토광물 조성에서 차이를 보인다. Opalinus Clay는 스멕타이트/일라이트 혼합층 광물을 포함하는 반면에 진주층 점토광물은 높은 매몰 온도에서 변질되어 형성된 일라이트가 우세하게 관찰된다. 본 연구 결과들은 국내 고준위방사성폐기물의 지층처분 암종 연구에 유용하게 활용될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 논문은 '2022년도 강원대학교 대학회계 학술연구조성비'와 한국지질자원연구원 2024년 기본사업의 하나인 'HLW 심층처분을 위한 지체구조별 암종 심부 특성 연구(GP2020-002; 24-3115)'사업들의 지원을 받아 수행하였습니다.

References

  1. Bjorlykke, K. and Aagaard, R. (1992) Clay minerals in North Sea sandstones. In Houseknecht, D.W. and Pittman, E.E. (eds.). Origin, Diagenesis, and Petrophysics of clay minerals in sandstone. Society of Economic Paleontologists and Mineralogists Special Publication, v.47, p.65-80.
  2. Bock, H., Dehandschutter, B., Martin, C.D., Mazurek, M., de Haller, A., Skoczylas, F. and Davy, C. (2010) Self-sealing of Fractures in Argillaceous Formations in Context with the Geological Disposal of Radioactive Waste. NEA Report No. 6184. OECD / Nuclear Energy Agency (NEA), Paris, France.
  3. Bossart, P. and Thury, M. (2008) Mont Terri Rock Laboratory Project, programme 1996 to 2007 and results. Rep. Swiss Geol. Surv., v.3, p.1-445.
  4. Bossart, P., Bernier, F., Birkholzer, J., Bruggeman, C., Connolly, P., Dewonck, S., Fukaya, M., Herfort, M., Jensen, M., Matray, J.M., Mayor, J.C., Moeri, A., Oyama, T., Schuster, K., Shigeta, N., Vietor, T. and Wieczorek, K. (2017) Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments. Swiss J. Geosci., v.110, p.3-22. doi: 10.1007/s00015-016-0236-1
  5. Calret, F., Lerouge, C., Laurioux, T., Bizi, M., Conte, T., Ghestem, J.P,, Wille, G., Sato, T., Gaucher, E.c., Giffaut, E. and Tournassat, C. (2010) Natural iodine in a cly formation: implications for iodine fate in geological disposals. Geochimica et Cosmochima Acta, v.74, p.16-29. doi: 10.1016/j.gca.2009.09.030
  6. Chang, K.H. (1975) Cretaceous stratigraphy of Southeast Korea. Journal of the Geological Society of Korea, v.11, p.1-23.
  7. Chang, K.H. (1987) Cretaceous Strata, Chapter 6-4, In: Lee, D.-S. (Ed.), Geology of Korea. Seoul, Kyohak-Sa, Geological Society of Korea, p.157-201.
  8. Chang, K.H. and Kim, H.M. (1968) Cretaceous paleocurrent and sedimentationin northwestern part of Kyongsang basin, southern Korea. Journal of the Geological Society of Korea, v.4, p.77-97.
  9. Chang, S., Park, J. and Um, W. (2018) Study of mobility for radionuclides in nuclear facility sites. Econ. Eviron, Geol., v.51(2), p.99-111. doi: 10.9719/EEG.2018.51.2.99
  10. Charlet, L., Alt-Epping, P., Wersin, P. and Gilbert, B. (2017) Diffusive transport and reaction in clay rocks: A storage (unclear waste, CO2, H2), energy (shale gas) and water quality issue. Advances in Water Resources, v.106, p.39-59. doi: 10.1016/j.advwatres.2017.03.019
  11. Choi, H.I. (1981) Depositional environments of the Sindong Group in the southwestern part of the Kyeongsang Basin. Unpublished Ph.D thesis, Seoul National University, 144 p.
  12. Choi, H.I. (1986) Fluvial plain/lacustrine transition in the cretaceous Sindong Group, South coast of Korea. Sedimentary Geology, v.48, p.295-320. doi: 10.1016/0037-0738(86)90034-5
  13. Choi, H.I. (1999) Upper Mesozoic. In: Geological Society of Korea (ed.), Geology of Korea. Sigma Press, p.233-273.
  14. Duro, L., Valls, A., Riba, O., Bruno, J. and Martinez-Esparza, A. (2010) Integrated Model for the Near Field of a Repository in Granite Host-Rock: Probabilistic Approach. 13th International Conference on Environmental Remediation and Radioactive Waste Management, v.2, p.419-429. doi: 10.1115/ICEM2010-40204
  15. Ehrenberg, S.N. and Nadeau, P.H. (1989) Formation of diagenetic illite in sandstones of the Garn Formation Haltenbanken area, mid-norwegian continental shelf. Clay Minerals, v.24, p.233-253. doi: 10.1180/claymin.1989.024.2.09
  16. Hostettler, B., Reisdorf, A. G., Jaeggi, D., Deplazes, G., Blasi, H., Morard, A., Feist-Burkhardt, S., Waltschew A., Dietze, V. and Menkveld-Gfeller, U. (2017) Litho- and biostratigraphy of the Opalinus Clay and bounding formations in the Mont Terri rock laboratory (Switzerland). Swiss J. Geosci., v.110, p.22-37. doi: 10.1007/s00015-016-0250-3
  17. Hower, J., Eslinger, E.V., Hower, M.E. and Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence. Geol. Soc. Am. Bull., v.87, p.725-737. doi: 10.1130/0016-7606(1976)87%3C725:MOBMOA%3E2.0.CO;2
  18. Kang, I., Park, S., Moon, H. and Yoo, J. (2003) Study on expandability and X-ray coherent scattering domain size of bentonite from Gampo and Yonil area, Korea. Econ. Environ, Geol., v.36, p.1-8.
  19. Kaufhold, A., Grasle, W., Plischke, I., Dohrmann, R. and Siegesmund, S. (2013) Influence of carbonate content and micro fabrics on the failure strength of the sandy facies of the Opalinus Clay from Mont Terri (Underground Rock Laboratory). Eng. Geol., v.156, p.111-118. doi: 10.1016/j.enggeo.2013.01.014
  20. KIGAM (2021) Research on rock properties in deep environment for HLW geological disposal, GP2020-002-2021, Daejeon, Korea, 330p.
  21. Kim, G., Koh, Y.K., Bae, D.S. and Kim, C.S. (2004) Mineralogical characteristics of fracture filling minerals from the deep borehole in the Yuseong area for the radioactive waste disposal project. J. Miner. Soc. Korea, v.17(1), p.99-114.
  22. Kim, G., Koh, Y.K., Choi, B., Shin, S.H. and Kim, D.H. (2008) Geochemical characteristics of the Gyeongju LILW repository II. Rock and mineral. Journal of the Korean Radioactive Waste Society, v.6(4), p.307-327.
  23. Klinkenberg, M., Kaufhold, S., Dohrmann, R. and Siegesmund, S. (2009) Influence of carbonate microfabrics on the failure strength of claystones. Eng. Geol., v.107, p.42-54. doi: 10.1016/j.enggeo.2009.04.001
  24. Kneuker, T., Dohrmann, R., Ufer, K. and Jaeggi, D. (2023) Compositional-strcutral characterization of the Opalinus Clay and Passwang Formation: New insights from Rietveld refinement (Mont Terri URL, Switzerland). Applied Clay Science, v.242, 107017. doi: 10.1016/j.clay.2023.107017
  25. Korea Institute of Geoscience and Mineral Resources (2019) Development of nationwide geoenvironmental maps for HLW geological disposal, GP2017-009-2019, Daejeon, Korea, 603p.
  26. Lauper, B., Jaeggi, D., Deplazes, G. and Foubert, A. (2018) Multiproxy facies analysis of the Opalinus Clay and depositional implications (Mont Terri rock laboratory, Switzerland). Swiss Journal of Geosciences, v.111, p.383-398. doi: 10.1007/s00015-018-0303-x
  27. Lee, J.I. and Lee, Y.I. (1998) Feldsapr albitization in Cretaceous non-marine mudrocks, Gyeongsang Basin. Korea. Sedimentology, v.45, p.745-754. doi: 10.1046/j.1365-3091.1998.00173.x
  28. Lee, J.I. and Lee, Y.I. (2000) Provenance of the Lower Cretaceous Hayang Group, Gyeongsang Basin, Southeastern Korea: implications for continental arc volcanism. J. Sediment. Res., v.70, p.151-158. doi: 10.1306/2DC40906-0E47-11D7-8643000102C1865D
  29. Lee, K.C. and Woo, K.S. (1996) Lacustrine stromatolites and diagenetic history of carbonate rocks of Chinju Formation in Kunwi area, Kyongsangbukdo, Korea. Journal of the Geological Society of Korea, v.32, p.351-365.
  30. Lerouge, C., Garangeon, S., Claret, F., Gaucher, E., Blanc, P., Guerrot., C., Flehoc, C., Willie, G. and Mazurk, M. (2014) Mineralogical and isotopic record of the diagenesis from the Opalinus Clay Formation at Banken, Switzerland: implications for the modeling of pore-water chemistry in a clay formation. Clays and Clay Minerals, v.62, p.286-312. doi: 10.1346/CCMN.2014.0620404
  31. Lim. H.S., Lee, Y.I. and Min, K.D. (2003) Thermal history of the Cretaceous Sindong Group, Gyeongsang Basin, Korea based on fission track analysis. Basin Research, v.15, p.139-152. doi: 10.1046/j.1365-2117.2003.00195.x
  32. NEA (2022) Clay Club Catalogue of Characteristics of Argillaceous Rocks - 2022 Update. NEA Report No. 7249. OECD/Nuclear Energy Agency (NEA), Paris, France.
  33. Paik, I.S., Kim. H.J., Kim, S., Lee, J.E., So, Y.H. and Lee, H. (2019) Fossil-bearing deposits in the Jinju Formation at Jinju: Occurrences, paleoenvironments and stratigraphic implications. Journal of the Geological Society of Korea, v.55, p.513-530. doi: 10.14770/jgsk.2019.55.5.513
  34. Paik, I.S. (2005) The oldest record of microbial-caddisfly bioherms from the Early Cretaceous Jinju Formation, Korea: occurrence and paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, v.218, p.301-315. doi: 10.1016/j.palaeo.2004.12.020
  35. Son, B. (2011) Mineral temperature of sedimentary Basins for petroleum resources exploration, korea. J. Miner. Soc. Korea, v.24(3), p.165-178. doi: 10.9727/jmsk.2011.24.3.165
  36. Sostaric, S.B. and Neubauer, F. (2012) Principle rock types for radioactive waste repositories. Rud.-geol.-naft. zb., v.24, p.11-18.
  37. Sucha, V., Kraust, I., Gerthofferova, H., Peters, J. and Serekova (1993) Smectite to illite conversion is bentonites and shales of the East Slovak Basin. Clay Miner., v.28, p.243-253. doi: 10.1180/claymin.1993.028.2.06
  38. Templeton, E.L., Bhat, H.S., Dmowska R. and Rice, J.R. (2010) Dynamic Rupture through a Branched Fault Configuration at Yucca Mountain, and Resulting Ground Motions. Bull. Seismol. Soc. America, v.100(4), p.1485-1497. doi: 10.1785/0120090121
  39. Um, S.H., Choi, H.I., Son, J.D., Oh, J.H., Kwak, Y.H., Shin, S.C. and Yun, H.S. (1983) Geological and geochemical studies on the Gyeongsang Supergroup in the Gyeongsang Basin. KIER Bulletin, v.36, 124p.
  40. Ziegler, P.A. (1990) Geological Atlas of Western and Central Europe, 2nd Edn. London: Shell Internationale Petroleum Mij. B.V. and Geological Society.