DOI QR코드

DOI QR Code

OGM-Based Real-Time Obstacle Detection and Avoidance Using a Multi-beam Forward Looking Sonar

  • Han-Sol Jin (Autonomous Systems R&D Division, Korea Institute of Robotics & Technology Convergence) ;
  • Hyungjoo Kang (Autonomous Systems R&D Division, Korea Institute of Robotics & Technology Convergence) ;
  • Min-Gyu Kim (Autonomous Systems R&D Division, Korea Institute of Robotics & Technology Convergence) ;
  • Mun-Jik Lee (Autonomous Systems R&D Division, Korea Institute of Robotics & Technology Convergence) ;
  • Ji-Hong Li (Autonomous Systems R&D Division, Korea Institute of Robotics & Technology Convergence)
  • 투고 : 2024.06.24
  • 심사 : 2024.07.23
  • 발행 : 2024.08.31

초록

Autonomous underwater vehicles (AUVs) have a limited bandwidth for real-time communication, limiting rapid responses to unexpected obstacles. This study addressed how AUVs can navigate to a target without a pre-existing obstacle map by generating one in real-time and avoiding obstacles. This paper proposes using forward-looking sonar with an occupancy grid map (OGM) for real-time obstacle mapping and a potential field algorithm for avoiding obstacles. The OGM segments the map into grids, updating the obstacle probability of each cell for precise, quick mapping. The potential field algorithm attracts the AUV towards the target and uses repulsive forces from obstacles for path planning, enhancing computational efficiency in a dynamic environment. Experiments were conducted in coastal waters with obstacles to verify the real-time obstacle mapping and avoidance algorithm. Despite the high noise in sonar data, the experimental results confirmed effective obstacle mapping and avoidance. The OGM-based potential field algorithm was computationally efficient, suitable for single-board computers, and demonstrated proper parameter adjustments through two distinct scenarios. The experiments also identified some of challenges, such as dynamic changes in detection rates, propulsion bubbles, and changes in repulsive forces caused by sudden obstacles. An enhanced algorithm to address these issues is currently under development.

키워드

과제정보

This work was supported in part by the Project titled "Autonomous underwater vehicle fleet and its operation system development for quick response of search on maritime disasters" of the Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Korea Coast Guard Agency under Grant KIMST-20210547, and in part by KIMST funded by the Ministry of Oceans and Fisheries in Republic of Korea under Grant RS-2023-00256122.

참고문헌

  1. Alhijawi, B., & Awajan, A. (2024). Genetic algorithms: theory, genetic operators, solutions, and applications. Evolutionary Intelligence, 17, 1245-1256. https://doi.org/10.1007/s12065-023-00822-6 
  2. Cho, J. H., Kim, J. S., Lim, J. S., Kim, S., & Kim, Y. S. (2007). Optimal acoustic search path planning for sonar system based on genetic algorithm. International Journal of Offshore and Polar Engineering, 17(03). 
  3. Dang, T. V., & Bui, N. T. (2023). Obstacle avoidance strategy for mobile robot based on monocular camera. Electronics, 12(8), 1932. https://doi.org/10.3390/electronics12081932 
  4. Dong, W. S., Wang, P. Y., Yin, W. T., Shi, G. M., & Wu, F. F., & Lu, X. (2018). Denoising prior driven deep neural network for image restoration. IEEE transactions on pattern analysis and machine intelligence, 41(10), 2305-2318. https://doi.org/10.1109/TPAMI.2018.2873610 
  5. Frost, V. S., Stiles, J. A., Shanmugan, K. S., & Holtzman, J. C. (1982). A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4(2), 157-166. https://doi.org/10.1109/TPAMI.1982.4767223 
  6. Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100-107. https://doi.org/10.1109/TSSC.1968.300136 
  7. Hong, S. (2023). A robust underwater object detection method using forward-looking sonar images. Remote Sensing Letters, 14(5), 442-449. https://doi.org/10.1080/2150704X.2023.2215895 
  8. Jiang, Y., Peng, P., Wang, L., Wang, J., Wu, J., & Liu, Y. (2023). LiDAR-based local path planning method for reactive navigation in underground mines. Remote Sensing, 15(2), 309. https://doi.org/10.3390/rs15020309 
  9. Kim, J., Song, S., & Yu, S. (2017). Denoising auto-encoder based image enhancement for high resolution sonar image. In 2017 IEEE Underwater Technology (UT), Busan, Korea. https://doi.org/10.1109/UT.2017.7890316 
  10. Kim, B., Sung, M., Lee, M., Cho, H., & Yu, S. C. (2020). Imaging sonar based AUV localization and 3D mapping using image sequences. In Global Oceans 2020: Singapore - U.S. Gulf Coast, Biloxi, MS, USA (pp. 1-6). https://doi.org/10.1109/IEEECONF38699.2020.9389469 
  11. Kim, M. H., Yoo, T., Park, S. J., & Oh, K. (2023). Forward-looking sonar-based stream function algorithm for obstacle avoidance in autonomous underwater vehicles. Journal of Marine Science and Engineering, 11(10), 1998. https://doi.org/10.3390/jmse11101998 
  12. Kot, R., Szymak, P., Piskur, P., & Naus, K. (2024). A comparative study of different collision avoidance systems with local path planning for autonomous underwater vehicles. IEEE Access, 12, 61443-61466. https://doi.org/10.1109/ACCESS.2024.3394569 
  13. Lee, J. S. (1981). Speckle analysis and smoothing of synthetic aperture radar images. Computer Graphics and Image Processing, 17(1), 24-32. https://doi.org/10.1016/S0146-664X(81)80005-6 
  14. Liang, X. X., Liu, C. Y., Song, X. L., & Zhang, Y. K. (2018). Research on improved artificial potential field approach in local path planning for mobile robot. Computer Simulation, 35(4), 291-361. 
  15. Li, T. T., Tang, S. F., Wang, F., Tong, M. M., & Xu, C. L. (2018). Image enhancement study based on adaptive median filtering with secondary noise detection and neighborhood pixel recovery. In 2018 International Conference on Robots & Intelligent System (ICRIS), Changsha, China (pp. 134-136). https://doi.org/10.1109/ICRIS.2018.00042 
  16. Li, J. H., Park, D., & Ki, G. (2019). Autonomous swimming technology for an AUV operating in the underwater jacket structure environment. International Journal of Naval Architecture and Ocean Engineering, 11(2), 679-687. https://doi.org/10.1016/j.ijnaoe.2019.02.002 
  17. Li, J. H., Kang, H., Kim, M.G., Lee, M.J., Cho, G. R., & Jin, H.S. (2022). Adaptive formation control of multiple underactuated autonomous underwater vehicles. Journal of Marine Science and Engineering, 10(9), 1233. https://doi.org/10.3390/jmse10091233 
  18. McConnell, J., & Englot, B. (2021). Predictive 3D sonar mapping of underwater environments via object-specific Bayesian inference. In 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi'an, China (pp. 6761-6767). https://doi.org/10.1109/ICRA48506.2021.9560737 
  19. Mbouombouo Mboungam, A. H., Zhi, Y., & Youani, W. A. T. (2023). Moving target detection using CA, SO and GO-CFAR detectors in nonhomogeneous environment. Applied Mathematics and Sciences: An International Journal (MathSJ), 7th International Conference on Applied Mathematics and Sciences. https://doi.org/10.2139/ssrn.4453254 
  20. Park, M. G., & Lee, M. C. (2003). A new technique to escape local minimum in artificial potential field based path planning. KSME International Journal, 17, 1876-1885. https://doi.org/10.1007/BF02982426 
  21. Paull, L., Saeedi, S., Li, H., & Myers, V. (2010). An information gain based adaptive path planning method for an autonomous underwater vehicle using sidescan sonar. In 2010 IEEE International Conference on Automation Science and Engineering, Toronto, ON, Canada (pp. 835-840). https://doi.org/10.1109/COASE.2010.5584478 
  22. Petillot, Y., Tena Ruiz, I., & Lane, D. M. (2001). Underwater vehicle obstacle avoidance and path planning using a multi-beam forward looking sonar. IEEE Journal of Oceanic Engineering, 26(2), 240-251. https://doi.org/10.1109/48.922790 
  23. Ritcey, J. A., & Hines, J. L. (1991). Performance of MAX family of order-statistic CFAR detectors. IEEE Transactions on Aerospace and Electronic Systems, 27(1), 48-57. https://doi.org/10.1109/7.68147 
  24. Rostami, S. M. H., Sangaiah, A. K., Wang, J., & Liu, X. (2019). Obstacle avoidance of mobile robots using modified artificial potential field algorithm. Journal of Wireless Communications and Networking, 2019, 70. https://doi.org/10.1186/s13638-019-1396-2 
  25. Shen, Y., Liu, Q., Lou, S. Q., & Hou, Y. L. (2017). Wavelet-based total variation and nonlocal similarity model for image denoising. IEEE Signal Processing Letters, 24(6), 877-881. https://doi.org/10.1109/LSP.2017.2688707 
  26. Sunny, S. P., & Narayanan M, P. (2022). Parallel sorting based OS-CFAR implementation in FPGA. In OCEANS 2022 - Chennai. Chennai, India. https://doi.org/10.1109/OCEANSChennai45887.2022.9775472 
  27. Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic Robotics. MIT Press. 
  28. Weber, T. C. (2021). A CFAR detection approach for identifying gas bubble seeps with multi-beam echo sounders. IEEE Journal of Oceanic Engineering, 46(4), 1346-1355. https://doi.org/10.1109/JOE.2021.3056910 
  29. Yang, X., Yang, W., Zhang, H. J., Chang. H., Chen C. Y., & Zhang, S. (2016). A new method for robot path planning based artificial potential field. In Proceedings of the IEEE 11th Conference on Industrial Electronics and Applications. Hefei, China (pp. 1294-1299). https://doi.org/10.1109/ICIEA.2016.7603784 
  30. Yuki, K., Yoshihiro, M., & Norishige, F. (2018). Parallelized and vectorized implementation of DCT denoising with FMA instructions. In 2018 International Workshop on Advanced Image Technology (IWAIT). Chiang Mai, Thailand. https://doi.org/10.1109/IWAIT.2018.8369754. 
  31. Yu, X., Luo, Y., & Liu, Y. (2023). A novel adaptive two-stage approach to dynamic optimal path planning of UAV in 3-D unknown environments. Multimedia Tools and Applications, 82, 18761-18779. https://doi.org/10.1007/s11042-022-14254-4 
  32. Zhang, J. C., Luo, H. B., Liang, R. G., Zhou, W., Hui, B., & Chang, Z. (2017). PCA-based denoising method for division of focal plane polarimeters. Optical Express, 25(3), 2391-2400. https://doi.org/10.1364/OE.25.002391