과제정보
This work was supported in part by the Project titled "Autonomous underwater vehicle fleet and its operation system development for quick response of search on maritime disasters" of the Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Korea Coast Guard Agency under Grant KIMST-20210547, and in part by KIMST funded by the Ministry of Oceans and Fisheries in Republic of Korea under Grant RS-2023-00256122.
참고문헌
- Alhijawi, B., & Awajan, A. (2024). Genetic algorithms: theory, genetic operators, solutions, and applications. Evolutionary Intelligence, 17, 1245-1256. https://doi.org/10.1007/s12065-023-00822-6
- Cho, J. H., Kim, J. S., Lim, J. S., Kim, S., & Kim, Y. S. (2007). Optimal acoustic search path planning for sonar system based on genetic algorithm. International Journal of Offshore and Polar Engineering, 17(03).
- Dang, T. V., & Bui, N. T. (2023). Obstacle avoidance strategy for mobile robot based on monocular camera. Electronics, 12(8), 1932. https://doi.org/10.3390/electronics12081932
- Dong, W. S., Wang, P. Y., Yin, W. T., Shi, G. M., & Wu, F. F., & Lu, X. (2018). Denoising prior driven deep neural network for image restoration. IEEE transactions on pattern analysis and machine intelligence, 41(10), 2305-2318. https://doi.org/10.1109/TPAMI.2018.2873610
- Frost, V. S., Stiles, J. A., Shanmugan, K. S., & Holtzman, J. C. (1982). A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4(2), 157-166. https://doi.org/10.1109/TPAMI.1982.4767223
- Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100-107. https://doi.org/10.1109/TSSC.1968.300136
- Hong, S. (2023). A robust underwater object detection method using forward-looking sonar images. Remote Sensing Letters, 14(5), 442-449. https://doi.org/10.1080/2150704X.2023.2215895
- Jiang, Y., Peng, P., Wang, L., Wang, J., Wu, J., & Liu, Y. (2023). LiDAR-based local path planning method for reactive navigation in underground mines. Remote Sensing, 15(2), 309. https://doi.org/10.3390/rs15020309
- Kim, J., Song, S., & Yu, S. (2017). Denoising auto-encoder based image enhancement for high resolution sonar image. In 2017 IEEE Underwater Technology (UT), Busan, Korea. https://doi.org/10.1109/UT.2017.7890316
- Kim, B., Sung, M., Lee, M., Cho, H., & Yu, S. C. (2020). Imaging sonar based AUV localization and 3D mapping using image sequences. In Global Oceans 2020: Singapore - U.S. Gulf Coast, Biloxi, MS, USA (pp. 1-6). https://doi.org/10.1109/IEEECONF38699.2020.9389469
- Kim, M. H., Yoo, T., Park, S. J., & Oh, K. (2023). Forward-looking sonar-based stream function algorithm for obstacle avoidance in autonomous underwater vehicles. Journal of Marine Science and Engineering, 11(10), 1998. https://doi.org/10.3390/jmse11101998
- Kot, R., Szymak, P., Piskur, P., & Naus, K. (2024). A comparative study of different collision avoidance systems with local path planning for autonomous underwater vehicles. IEEE Access, 12, 61443-61466. https://doi.org/10.1109/ACCESS.2024.3394569
- Lee, J. S. (1981). Speckle analysis and smoothing of synthetic aperture radar images. Computer Graphics and Image Processing, 17(1), 24-32. https://doi.org/10.1016/S0146-664X(81)80005-6
- Liang, X. X., Liu, C. Y., Song, X. L., & Zhang, Y. K. (2018). Research on improved artificial potential field approach in local path planning for mobile robot. Computer Simulation, 35(4), 291-361.
- Li, T. T., Tang, S. F., Wang, F., Tong, M. M., & Xu, C. L. (2018). Image enhancement study based on adaptive median filtering with secondary noise detection and neighborhood pixel recovery. In 2018 International Conference on Robots & Intelligent System (ICRIS), Changsha, China (pp. 134-136). https://doi.org/10.1109/ICRIS.2018.00042
- Li, J. H., Park, D., & Ki, G. (2019). Autonomous swimming technology for an AUV operating in the underwater jacket structure environment. International Journal of Naval Architecture and Ocean Engineering, 11(2), 679-687. https://doi.org/10.1016/j.ijnaoe.2019.02.002
- Li, J. H., Kang, H., Kim, M.G., Lee, M.J., Cho, G. R., & Jin, H.S. (2022). Adaptive formation control of multiple underactuated autonomous underwater vehicles. Journal of Marine Science and Engineering, 10(9), 1233. https://doi.org/10.3390/jmse10091233
- McConnell, J., & Englot, B. (2021). Predictive 3D sonar mapping of underwater environments via object-specific Bayesian inference. In 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi'an, China (pp. 6761-6767). https://doi.org/10.1109/ICRA48506.2021.9560737
- Mbouombouo Mboungam, A. H., Zhi, Y., & Youani, W. A. T. (2023). Moving target detection using CA, SO and GO-CFAR detectors in nonhomogeneous environment. Applied Mathematics and Sciences: An International Journal (MathSJ), 7th International Conference on Applied Mathematics and Sciences. https://doi.org/10.2139/ssrn.4453254
- Park, M. G., & Lee, M. C. (2003). A new technique to escape local minimum in artificial potential field based path planning. KSME International Journal, 17, 1876-1885. https://doi.org/10.1007/BF02982426
- Paull, L., Saeedi, S., Li, H., & Myers, V. (2010). An information gain based adaptive path planning method for an autonomous underwater vehicle using sidescan sonar. In 2010 IEEE International Conference on Automation Science and Engineering, Toronto, ON, Canada (pp. 835-840). https://doi.org/10.1109/COASE.2010.5584478
- Petillot, Y., Tena Ruiz, I., & Lane, D. M. (2001). Underwater vehicle obstacle avoidance and path planning using a multi-beam forward looking sonar. IEEE Journal of Oceanic Engineering, 26(2), 240-251. https://doi.org/10.1109/48.922790
- Ritcey, J. A., & Hines, J. L. (1991). Performance of MAX family of order-statistic CFAR detectors. IEEE Transactions on Aerospace and Electronic Systems, 27(1), 48-57. https://doi.org/10.1109/7.68147
- Rostami, S. M. H., Sangaiah, A. K., Wang, J., & Liu, X. (2019). Obstacle avoidance of mobile robots using modified artificial potential field algorithm. Journal of Wireless Communications and Networking, 2019, 70. https://doi.org/10.1186/s13638-019-1396-2
- Shen, Y., Liu, Q., Lou, S. Q., & Hou, Y. L. (2017). Wavelet-based total variation and nonlocal similarity model for image denoising. IEEE Signal Processing Letters, 24(6), 877-881. https://doi.org/10.1109/LSP.2017.2688707
- Sunny, S. P., & Narayanan M, P. (2022). Parallel sorting based OS-CFAR implementation in FPGA. In OCEANS 2022 - Chennai. Chennai, India. https://doi.org/10.1109/OCEANSChennai45887.2022.9775472
- Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic Robotics. MIT Press.
- Weber, T. C. (2021). A CFAR detection approach for identifying gas bubble seeps with multi-beam echo sounders. IEEE Journal of Oceanic Engineering, 46(4), 1346-1355. https://doi.org/10.1109/JOE.2021.3056910
- Yang, X., Yang, W., Zhang, H. J., Chang. H., Chen C. Y., & Zhang, S. (2016). A new method for robot path planning based artificial potential field. In Proceedings of the IEEE 11th Conference on Industrial Electronics and Applications. Hefei, China (pp. 1294-1299). https://doi.org/10.1109/ICIEA.2016.7603784
- Yuki, K., Yoshihiro, M., & Norishige, F. (2018). Parallelized and vectorized implementation of DCT denoising with FMA instructions. In 2018 International Workshop on Advanced Image Technology (IWAIT). Chiang Mai, Thailand. https://doi.org/10.1109/IWAIT.2018.8369754.
- Yu, X., Luo, Y., & Liu, Y. (2023). A novel adaptive two-stage approach to dynamic optimal path planning of UAV in 3-D unknown environments. Multimedia Tools and Applications, 82, 18761-18779. https://doi.org/10.1007/s11042-022-14254-4
- Zhang, J. C., Luo, H. B., Liang, R. G., Zhou, W., Hui, B., & Chang, Z. (2017). PCA-based denoising method for division of focal plane polarimeters. Optical Express, 25(3), 2391-2400. https://doi.org/10.1364/OE.25.002391