DOI QR코드

DOI QR Code

Effects of Storm Waves Caused by Typhoon Bolaven (1215) on Korean Coast: A Comparative Analysis with Deepwater Design Waves

  • Taegeon Hwang (Department of Ocean Civil Engineering, Gyeongsang National University) ;
  • Seung-Chul Seo (CNC Ocean) ;
  • Hoyeong Jin (Department of Ocean Civil Engineering, Gyeongsang National University) ;
  • Hyeseong Oh (Department of Ocean Civil Engineering, Gyeongsang National University) ;
  • Woo-Dong Lee (Department of Ocean Civil Engineering, Gyeongsang National University)
  • Received : 2024.01.19
  • Accepted : 2024.06.05
  • Published : 2024.08.31

Abstract

This paper employs the third-generation simulating waves nearshore (SWAN) ocean wave model to estimate and analyze storm waves induced by Typhoon Bolaven, focusing on its impact along the west coast and Jeju Island of Korea. Utilizing reanalyzed meteorological data from the Japan Meteorological Agency meso scale model (JMA-MSM), the study simulated storm waves from Typhoon Bolaven, which maintained its intensity up to high latitudes as it approached the Korean Peninsula in 2012. Validation of the SWAN model against observed wave data demonstrated a strong correlation, particularly in regions where wind speeds exceeded 20 m/s and wave heights surpassed 5 m. Results indicate significant storm wave heights across Jeju Island and Korea's west and southwest seas, with coastal grid points near islands recording storm wave heights exceeding 90% of the 50-year return period design wave heights. Notably, specific grid points near islands in the northern West Sea and southwest Jeju Island estimated storm wave heights at 90.22% and 91.48% of the design values, respectively. The paper highlights the increased uncertainty and vulnerability in coastal disaster predictions due to event-driven typhoons and emphasizes the need for enhanced accuracy and speed in typhoon wave predictions amid the escalating climate crisis.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (RS-2022-00144263).

References

  1. Chun, H., Kang, T.-S., Ahn, K., Jeong, W. M., Kim, T.-R., & Lee, D. H. (2014). A study on the statistical characteristics and numerical hindcasts of storm waves in East Sea. Journal of Korean Society of Coastal and Ocean Engineers, 26(2), 81-95. https://doi.org/10.9765/KSCOE.2014.26.2.81 
  2. Do, K., & Kim, J. (2018). A study on the predictability of eastern winter storm waves using operational wind forecasts of KMA. Journal of Korean Society of Coastal and Ocean Engineers, 30(5), 223-233. https://doi.org/10.9765/KSCOE.2018.30.5.223 
  3. Eum, H.-S., Kang, T.-S., Nam, S.-Y., & Jeong, W. M. (2016). Wave modeling considering water level changes and currents effects. Journal of Korean Society of Coastal and Ocean Engineers, 28(6), 383-396. https://doi.org/10.9765/KSCOE.2016.28.6.383 
  4. Kang, T.-S., Park, J.-J., & Eum, H.-S. (2015). Coastal wave hind-casting modelling using ECMWF wind dataset. Journal of the Korean Society of Marine Environment & Safety, 21(5), 599-607. https://doi.org/10.7837/kosomes.2015.21.5.599 
  5. Kang, J. W., & Kim, Y.-S. (2019). Typhoon-surge characteristics and the highest high water levels at the Western coast. Journal of Korean Society of Coastal and Ocean Engineers, 31(2), 50-61. https://doi.org/10.9765/KSCOE.2019.31.2.50 
  6. Kim, G. H., Ryu, K. H., & Yoon, S. B. (2020). Numerical simulation of storm surge and wave due to typhoon Bolaven of 2012. Journal of Korean Society of Coastal and Ocean Engineers, 32(4), 273-283. https://doi.org/10.9765/KSCOE.2020.32.4.273 
  7. Kim, Y. J., Kim, T. W., Yoon, J. S., & Kim, I. H. (2019a). Study on prediction of similar typhoons through neural network optimization. Journal of Ocean Engineering and Technology, 33(5), 427-434. https://doi.org/10.26748/KSOE.2019.065 
  8. Kim, Y. J., Kim, T. W., Yoon, J. S., & Kim, M. K. (2019b). Study of the construction of a coastal disaster prevention system using deep learning. Journal of Ocean Engineering and Technology, 33(6), 590-596. https://doi.org/10.26748/KSOE.2019.066 
  9. Kim, T.-J., Kwon, H.-H., & Kim, K. Y. (2014). Assessment of typhoon trajectories and synoptic pattern based on probabilistic cluster analysis for the typhoons affecting the Korean peninsula. Journal of Korea Water Resources Association, 47(4), 385-396. https://doi.org/10.3741/JKWRA.2014.47.4.385 
  10. Kim, T., & Lee, W.-D. (2023a). Prediction of wave conditions using a machine learning framework on the East coast of Korea. Journal of Coastal Research, 39(1), 143-153. https://doi.org/10.2112/JCOASTRES-D-22TM-00002.1 
  11. Kim, T., & Lee, W.-D. (2023b). Prediction of wave overtopping discharges at coastal structures using interpretable machine learning. Coastal Engineering Journal, 65(3), 433-449. https://doi.org/10.1080/21664250.2023.2233312 
  12. Kossin, J. P. (2018). A global slowdown of tropical-cyclone translation speed. Nature, 558(7708), 104-107. https://doi.org/10.1038/s41586-018-0158-3 
  13. Kwon, K. K., Jho, M. H., & Yoon, S. B. (2020). Numerical simulation of storm surge and wave due to Typhoon Kong-Rey of 2018. Journal of Korean Society of Coastal and Ocean Engineers, 32(4), 252-261. https://doi.org/10.9765/KSCOE.2020.32.4.252 
  14. Ministry of Oceans and Fisheries (MOF). (2019). Report on estimation of deep water design waves of Korea. Ministry of Oceans and Fisheries. 
  15. Park, K.-S., Heo, K.-Y., Jun, K., Kwon, J.-I., Kim, J., Choi, J.-Y., Cho, K.-H., Choi, B.-J., Seo, S.-N., Kim, Y. H., Kim, S.-D., Yang, C.-S., Lee, J.-C., Kim, S.-I., Kim, S., Choi, J.-W., & Jeong, S.-H. (2015). Development of the operational oceanographic system of Korea. Ocean Science Journal, 50(2), 353-369. https://doi.org/10.1007/s12601-015-0033-1 
  16. Rogers, W. E., Babanin, A. V., & Wang, D. W. (2012). Observation-consistent input and white capping dissipation in a model for wind-generated surface waves: Description and simple calculations. Journal of Atmospheric and Oceanic Technology, 29(9), 1329-1346. https://doi.org/10.1175/JTECH-D-11-00092.1 
  17. Rogers, W. E., Hwang, P. A., & Wang, D. W. (2003). Investigation of wave growth and decay in the SWAN model: three regional-scale applications. Journal of Physical Oceanography, 33(2), 366-389. https://doi.org/10.1175/1520-0485(2003)033<0366:IOWGAD>2.0.CO;2 
  18. Seo, S.-C., Kim, H.-J., Hwang, T., & Lee, W.-D. (2023). Storm wave characteristics during typhoons Maysak and Haishen on the east and south coasts of Korea. Journal of Coastal Research, 39(1), 129-142. https://doi.org/10.2112/JCOASTRES-D-22TM-00001.1 
  19. Son, B., & Do, K. (2021). Optimization of SWAN wave model to improve the accuracy of winter storm wave prediction in the East Sea. Journal of Ocean Engineering and Technology, 35(4), 273-286. https://doi.org/10.26748/KSOE.2021.019 
  20. Son, B., & Do, K. (2022). Numerical Simulation of Storm Waves during Typhoon Maysak and Haishen in the Korean Peninsula. Journal of Coastal Disaster Prevention, 9(1), 43-59. https://doi.org/10.20481/kscdp.2022.9.1.43 
  21. The SWAN Team. (2020a). SWAN user manual. SWAN Cycle III (Version 41.31A) Delft University of Technology, The Netherlands. 
  22. The SWAN Team. (2020b). SWAN scientific and technical documentation. SWAN Cycle III Version 41.31A. Delft University of Technology, The Netherlands. 
  23. Tozer, B., Sandwell, D. T., Smith, W. H., Olson, C., Beale, J. R., & Wessel, P. (2019). Global bathymetry and topography at 15 arc sec: SRTM15+. Earth and Space Science, 6(10), 1847-1864. https://doi.org/10.1029/2019EA000658 
  24. World Meteorological Organization (WMO). (2022). State of the global climate 2021. (WMO-No. 1290, p. 57). World Meteorological Organization 
  25. Yoon, S. B., Jeong, W. M., Jho, M. H., & Ryu, K. H. (2020). Analysis of reliability of weather fields for typhoon Maemi (0314). Journal of Korean Society of Coastal and Ocean Engineers, 32(5), 351-362. https://doi.org/10.9765/KSCOE.2020.32.5.351