Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (RS-2022-00144263).
References
- Chun, H., Kang, T.-S., Ahn, K., Jeong, W. M., Kim, T.-R., & Lee, D. H. (2014). A study on the statistical characteristics and numerical hindcasts of storm waves in East Sea. Journal of Korean Society of Coastal and Ocean Engineers, 26(2), 81-95. https://doi.org/10.9765/KSCOE.2014.26.2.81
- Do, K., & Kim, J. (2018). A study on the predictability of eastern winter storm waves using operational wind forecasts of KMA. Journal of Korean Society of Coastal and Ocean Engineers, 30(5), 223-233. https://doi.org/10.9765/KSCOE.2018.30.5.223
- Eum, H.-S., Kang, T.-S., Nam, S.-Y., & Jeong, W. M. (2016). Wave modeling considering water level changes and currents effects. Journal of Korean Society of Coastal and Ocean Engineers, 28(6), 383-396. https://doi.org/10.9765/KSCOE.2016.28.6.383
- Kang, T.-S., Park, J.-J., & Eum, H.-S. (2015). Coastal wave hind-casting modelling using ECMWF wind dataset. Journal of the Korean Society of Marine Environment & Safety, 21(5), 599-607. https://doi.org/10.7837/kosomes.2015.21.5.599
- Kang, J. W., & Kim, Y.-S. (2019). Typhoon-surge characteristics and the highest high water levels at the Western coast. Journal of Korean Society of Coastal and Ocean Engineers, 31(2), 50-61. https://doi.org/10.9765/KSCOE.2019.31.2.50
- Kim, G. H., Ryu, K. H., & Yoon, S. B. (2020). Numerical simulation of storm surge and wave due to typhoon Bolaven of 2012. Journal of Korean Society of Coastal and Ocean Engineers, 32(4), 273-283. https://doi.org/10.9765/KSCOE.2020.32.4.273
- Kim, Y. J., Kim, T. W., Yoon, J. S., & Kim, I. H. (2019a). Study on prediction of similar typhoons through neural network optimization. Journal of Ocean Engineering and Technology, 33(5), 427-434. https://doi.org/10.26748/KSOE.2019.065
- Kim, Y. J., Kim, T. W., Yoon, J. S., & Kim, M. K. (2019b). Study of the construction of a coastal disaster prevention system using deep learning. Journal of Ocean Engineering and Technology, 33(6), 590-596. https://doi.org/10.26748/KSOE.2019.066
- Kim, T.-J., Kwon, H.-H., & Kim, K. Y. (2014). Assessment of typhoon trajectories and synoptic pattern based on probabilistic cluster analysis for the typhoons affecting the Korean peninsula. Journal of Korea Water Resources Association, 47(4), 385-396. https://doi.org/10.3741/JKWRA.2014.47.4.385
- Kim, T., & Lee, W.-D. (2023a). Prediction of wave conditions using a machine learning framework on the East coast of Korea. Journal of Coastal Research, 39(1), 143-153. https://doi.org/10.2112/JCOASTRES-D-22TM-00002.1
- Kim, T., & Lee, W.-D. (2023b). Prediction of wave overtopping discharges at coastal structures using interpretable machine learning. Coastal Engineering Journal, 65(3), 433-449. https://doi.org/10.1080/21664250.2023.2233312
- Kossin, J. P. (2018). A global slowdown of tropical-cyclone translation speed. Nature, 558(7708), 104-107. https://doi.org/10.1038/s41586-018-0158-3
- Kwon, K. K., Jho, M. H., & Yoon, S. B. (2020). Numerical simulation of storm surge and wave due to Typhoon Kong-Rey of 2018. Journal of Korean Society of Coastal and Ocean Engineers, 32(4), 252-261. https://doi.org/10.9765/KSCOE.2020.32.4.252
- Ministry of Oceans and Fisheries (MOF). (2019). Report on estimation of deep water design waves of Korea. Ministry of Oceans and Fisheries.
- Park, K.-S., Heo, K.-Y., Jun, K., Kwon, J.-I., Kim, J., Choi, J.-Y., Cho, K.-H., Choi, B.-J., Seo, S.-N., Kim, Y. H., Kim, S.-D., Yang, C.-S., Lee, J.-C., Kim, S.-I., Kim, S., Choi, J.-W., & Jeong, S.-H. (2015). Development of the operational oceanographic system of Korea. Ocean Science Journal, 50(2), 353-369. https://doi.org/10.1007/s12601-015-0033-1
- Rogers, W. E., Babanin, A. V., & Wang, D. W. (2012). Observation-consistent input and white capping dissipation in a model for wind-generated surface waves: Description and simple calculations. Journal of Atmospheric and Oceanic Technology, 29(9), 1329-1346. https://doi.org/10.1175/JTECH-D-11-00092.1
- Rogers, W. E., Hwang, P. A., & Wang, D. W. (2003). Investigation of wave growth and decay in the SWAN model: three regional-scale applications. Journal of Physical Oceanography, 33(2), 366-389. https://doi.org/10.1175/1520-0485(2003)033<0366:IOWGAD>2.0.CO;2
- Seo, S.-C., Kim, H.-J., Hwang, T., & Lee, W.-D. (2023). Storm wave characteristics during typhoons Maysak and Haishen on the east and south coasts of Korea. Journal of Coastal Research, 39(1), 129-142. https://doi.org/10.2112/JCOASTRES-D-22TM-00001.1
- Son, B., & Do, K. (2021). Optimization of SWAN wave model to improve the accuracy of winter storm wave prediction in the East Sea. Journal of Ocean Engineering and Technology, 35(4), 273-286. https://doi.org/10.26748/KSOE.2021.019
- Son, B., & Do, K. (2022). Numerical Simulation of Storm Waves during Typhoon Maysak and Haishen in the Korean Peninsula. Journal of Coastal Disaster Prevention, 9(1), 43-59. https://doi.org/10.20481/kscdp.2022.9.1.43
- The SWAN Team. (2020a). SWAN user manual. SWAN Cycle III (Version 41.31A) Delft University of Technology, The Netherlands.
- The SWAN Team. (2020b). SWAN scientific and technical documentation. SWAN Cycle III Version 41.31A. Delft University of Technology, The Netherlands.
- Tozer, B., Sandwell, D. T., Smith, W. H., Olson, C., Beale, J. R., & Wessel, P. (2019). Global bathymetry and topography at 15 arc sec: SRTM15+. Earth and Space Science, 6(10), 1847-1864. https://doi.org/10.1029/2019EA000658
- World Meteorological Organization (WMO). (2022). State of the global climate 2021. (WMO-No. 1290, p. 57). World Meteorological Organization
- Yoon, S. B., Jeong, W. M., Jho, M. H., & Ryu, K. H. (2020). Analysis of reliability of weather fields for typhoon Maemi (0314). Journal of Korean Society of Coastal and Ocean Engineers, 32(5), 351-362. https://doi.org/10.9765/KSCOE.2020.32.5.351