Acknowledgement
This work was supported by grants from the National Natural Science Foundation of China (81900392), Henan Outstanding Youth Science Fund (202300410307), Xinxiang Medical University Doctor Support Foundation (300-505307, XYBSKYZZ 201902), Graduate Research Innovation Support Program (YJSCX202206Z).
References
- Skalen K, Gustafsson M, Rydberg EK et al (2002) Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417, 750-754 https://doi.org/10.1038/nature00804
- Stachowicz A, Wisniewska A, Kus K et al (2019) The Influence of trehalose on atherosclerosis and hepatic steatosis in apolipoprotein E knockout mice. Int J Mol Sci 20, 1552
- Vergallo R and Crea F (2020) Atherosclerotic plaque healing. N Engl J Med 383, 846-857 https://doi.org/10.1056/NEJMra2000317
- Yang ZH, Pryor M, Noguchi A et al (2019) Dietary palmitoleic acid attenuates atherosclerosis progression and hyperlipidemia in low-density lipoprotein receptor-deficient mice. Mol Nutr Food Res 63, e1900120
- Choi BJ, Matsuo Y, Aoki T et al (2014) Coronary endothelial dysfunction is associated with inflammation and vasa vasorum proliferation in patients with early atherosclerosis. Arterioscl Throm Vas 34, 2473-2477 https://doi.org/10.1161/ATVBAHA.114.304445
- Feaver RE, Gelfand BD, Wang C, Schwartz MA and Blackman BR (2010) Atheroprone hemodynamics regulate fibronectin deposition to create positive feedback that sustains endothelial inflammation. Circ Res 106, 1703-1711 https://doi.org/10.1161/CIRCRESAHA.109.216283
- Evans TD, Jeong SJ, Zhang X, Sergin I and Razani B (2018) TFEB and trehalose drive the macrophage autophagy-lysosome system to protect against atherosclerosis. Autophagy 14, 724-726 https://doi.org/10.1080/15548627.2018.1434373
- Peled M and Fisher EA (2014) Dynamic aspects of macrophage polarization during atherosclerosis progression and regression. Front Immunol 5, 579
- Wang Y, Wang GZ, Rabinovitch PS and Tabas I (2014) Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-κB-mediated inflammation in macrophages. Circ Res 114, 421-433 https://doi.org/10.1161/CIRCRESAHA.114.302153
- Yurdagul A, Doran AC, Cai B, Fredman G and Tabas IA (2017) Mechanisms and consequences of defective efferocytosis in atherosclerosis. Front Cardiovasc Med 4, 86
- Fontana MF, Baccarella A, Pancholi N, Pufall MA, Herbert DBR and Kim CC (2015) JUNB is a key transcriptional modulator of macrophage activation. J Immunol 194, 177-186 https://doi.org/10.4049/jimmunol.1401595
- Xiao C, Wang RH, Lahusen TJ et al (2012) Progression of chronic liver inflammation and fibrosis driven by activation of c-JUN signaling in Sirt6 mutant mice. J Biol Chem 287, 41903-41913 https://doi.org/10.1074/jbc.M112.415182
- Hao XZ and Fan HM (2017) Identification of miRNAs as atherosclerosis biomarkers and functional role of miR-126 in atherosclerosis progression through MAPK signalling pathway. Eur Rev Med Pharmacol Sci 21, 2725-2733
- Hirschberger S, Hinske LC and Kreth S (2018) MiRNAs: dynamic regulators of immune cell functions in inflammation and cancer. Cancer Lett 431, 11-21 https://doi.org/10.1016/j.canlet.2018.05.020
- Kim JM, Jung KH, Chu K et al (2015) Atherosclerosis-related circulating MicroRNAs as a predictor of stroke recurrence. Transl Stroke Res 6, 191-197 https://doi.org/10.1007/s12975-015-0390-1
- Olivieri F, Prattichizzo F, Giuliani A et al (2021) miR-21 and miR-146a: the microRNAs of inflammaging and age-related diseases. Ageing Res Rev 70, 101374
- Quintavalle M, Condorelli G and Elia L (2011) Arterial remodeling and atherosclerosis: miRNAs involvement. Vascul Pharmacol 55, 106-110 https://doi.org/10.1016/j.vph.2011.08.216
- Krol J, Loedige I and Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11, 597-610 https://doi.org/10.1038/nrg2843
- Lulla AR, Slifker MJ, Zhou Y et al (2017) miR-6883 Family miRNAs target CDK4/6 to induce G(1) phase cell-cycle arrest in colon cancer cells. Cancer Res 77, 6902-6913 https://doi.org/10.1158/0008-5472.CAN-17-1767
- Sherrard R, Luehr S, Holzkamp H, McJunkin K, Memar N and Conradt B (2017) miRNAs cooperate in apoptosis regulation during C. elegans development. Genes Dev 31, 209-222 https://doi.org/10.1101/gad.288555.116
- Zhao Y, Ponnusamy M, Dong Y, Zhang L, Wang K and Li P (2017) Effects of miRNAs on myocardial apoptosis by modulating mitochondria related proteins. Clin Exp Pharmacol Physiol 44, 431-440 https://doi.org/10.1111/1440-1681.12720
- Bushati N and Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23, 175-205 https://doi.org/10.1146/annurev.cellbio.23.090506.123406
- Wu CY, Zhou ZF, Wang B, Ke ZP, Ge ZC and Zhang XJ (2019) MicroRNA-328 ameliorates oxidized low-density lipoprotein-induced endothelial cells injury through targeting HMGB1 in atherosclerosis. J Cell Biochem 120, 1643-1650 https://doi.org/10.1002/jcb.27469
- Binesh A, Devaraj SN and Devaraj H (2020) Expression of chemokines in macrophage polarization and downregulation of NFκB in aorta allow macrophage polarization by diosgenin in atherosclerosis. J Biochem Mol Toxic 34, e22422 https://doi.org/10.1002/jbt.22422
- Tabas I and Bornfeldt KE (2016) Macrophage phenotype and function in different stages of atherosclerosis. Circ Res 118, 653-667 https://doi.org/10.1161/CIRCRESAHA.115.306256
- Raife TJ, Dwyre DM, Stevens JW et al (2011) Human thrombomodulin knock-in mice reveal differential effects of human thrombomodulin on thrombosis and atherosclerosis. Arterioscler Thromb Vasc Biol 31, 2509-2517 https://doi.org/10.1161/ATVBAHA.111.236828
- Shankman LS, Gomez D, Cherepanova OA et al (2015) KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med 21, 628-637 https://doi.org/10.1038/nm.3866
- Takaya T, Hirata K, Yamashita T et al (2007) A specific role for eNOS-derived reactive oxygen species in atherosclerosis progression. Arterioscler Thromb Vasc Biol 27, 1632-1637 https://doi.org/10.1161/ATVBAHA.107.142182
- Khoyratty TE, Ai Z, Ballesteros I et al (2021) Distinct transcription factor networks control neutrophil-driven inflammation. Nat Immunol 22, 1093-1106 https://doi.org/10.1038/s41590-021-00968-4
- Mathas S, Hinz M, Anagnostopoulos I et al (2002) Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-kappa B. EMBO J 21, 4104-4113 https://doi.org/10.1093/emboj/cdf389
- Schmidt D, Textor B, Pein OT et al (2007) Critical role for NF-kappaB-induced JunB in VEGF regulation and tumor angiogenesis. EMBO J 26, 710-719 https://doi.org/10.1038/sj.emboj.7601539