DOI QR코드

DOI QR Code

Structural stability for surface display of antigen 43 and application to bacterial outer membrane vesicles production

  • Gna Ahn (Department of Microbiology, Chungbuk National University) ;
  • Hyo-Won Yoon (Department of Microbiology, Chungbuk National University) ;
  • Jae-Won Choi (Department of Biopharmaceutical Sciences, Cheongju University) ;
  • Woo-Ri Shin (Department of Microbiology, Chungbuk National University) ;
  • Jiho Min (Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University) ;
  • Yang-Hoon Kim (Department of Microbiology, Chungbuk National University) ;
  • Ji-Young Ahn (Department of Microbiology, Chungbuk National University)
  • Received : 2024.04.15
  • Accepted : 2024.05.10
  • Published : 2024.08.31

Abstract

Antigen 43 (Ag43) proteins, found on the outer membrane of Escherichia coli, are β-sheets that fold into a unique cylindrical structure known as a β-barrel. There are several known structural similarities between bacterial Ag43 autotransporters and physical components; however, the factors that stabilize the barrel and the mechanism for Ag43 passenger domain-mediated translocation across the pore of the β-barrel remain unclear. In this study, we analyzed Ag43β-enhanced green fluorescent protein chimeric variants to provide new insights into the autotransporter Ag43β-barrel assembly, focusing on the impact of the α-helical linker domain. Among the chimeric variants, Ag43β700 showed the highest surface display, which was confirmed through extracellular protease digestion, flow cytometry, and an evaluation of outer membrane vesicles (OMVs). The Ag43β700 module offered reliable information on stable barrel folding and chimera expression at the exterior of the OMVs.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2020R1A6A1A06046235), the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through the Crop Viruses and Pests Response Industry Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA; No. 321108-04), and the Commercializations Promotion Agency for R&D Outcomes (COMPA) grant funded by the Korea government (MSIT; No. 1711173792).

References

  1. Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC and Ala'Aldeen D (2004) Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68, 692-744 https://doi.org/10.1128/MMBR.68.4.692-744.2004
  2. Klemm P, Hjerrild L, Gjermansen M and Schembri MA (2004) Structure-function analysis of the self-recognizing antigen 43 autotransporter protein from Escherichia coli. Mol Microbiol 51, 283-296 https://doi.org/10.1046/j.1365-2958.2003.03833.x
  3. Wells TJ, Tree JJ, Ulett GC and Schembri MA (2007) Autotransporter proteins: novel targets at the bacterial cell surface. FEMS Microbiol Lett 274, 163-172 https://doi.org/10.1111/j.1574-6968.2007.00833.x
  4. Huang FY, Wang CC, Huang YH et al (2014) Antigen 43/Fcε3 chimeric protein expressed by a novel bacterial surface expression system as an effective asthma vaccine. Immunology 143, 230-240 https://doi.org/10.1111/imm.12302
  5. Kjaergaard K, Hasman H, Schembri MA and Klemm P (2002) Antigen 43-mediated autotransporter display, a versatile bacterial cell surface presentation system. J Bacteriol 184, 4197-4204 https://doi.org/10.1128/JB.184.15.4197-4204.2002
  6. Ramesh B, Sendra VG, Cirino PC and Varadarajan N (2012) Single-cell characterization of autotransporter-mediated Escherichia coli surface display of disulfide bondcontaining proteins. J Biol Chem 287, 38580-38589 https://doi.org/10.1074/jbc.M112.388199
  7. Heras B, Totsika M, Peters KM et al (2014) The antigen 43 structure reveals a molecular Velcro-like mechanism of autotransporter-mediated bacterial clumping. Proc Natl Acad Sci U S A 111, 457-462 https://doi.org/10.1073/pnas.1311592111
  8. Kalathiya U, Padariya M and Baginski M (2019) Structural, functional, and stability change predictions in human telomerase upon specific point mutations. Sci Rep 9, 8707
  9. Shin WR, Park DY, Kim JH et al (2022) Structure based innovative approach to analyze aptaprobe-GPC3 complexes in hepatocellular carcinoma. J Nanobiotechnol 20, 204
  10. Schwechheimer C and Kuehn MJ (2015) Outer-membrane vesicles from gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 13, 605-619 https://doi.org/10.1038/nrmicro3525
  11. Petousis-Harris H and Radcliff FJ (2019) Exploitation of Neisseria meningitidis Group B OMV vaccines against N. gonorrhoeae to inform the development and deployment of effective gonorrhea vaccines. Front Immunol 10, 683
  12. Gujrati V, Kim S, Kim SH et al (2014) Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. Acs Nano 8, 1525-1537 https://doi.org/10.1021/nn405724x
  13. Brown L, Wolf JM, Prados-Rosales R and Casadevall A (2015) Through the wall: extracellular vesicles in gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol 13, 620-630 https://doi.org/10.1038/nrmicro3480
  14. Bernadac A, Gavioli M, Lazzaroni JC, Raina S and Lloubes R (1998) Escherichia coli tol-pal mutants form outer membrane vesicles. J Bacteriol 180, 4872-4878 https://doi.org/10.1128/JB.180.18.4872-4878.1998
  15. Schwechheimer C, Kulp A and Kuehn MJ (2014) Modulation of bacterial outer membrane vesicle production by envelope structure and content. BMC Microbiol 14, 324
  16. van de Waterbeemd B, Streefland M, van der Ley P et al (2010) Improved OMV vaccine against Neisseria meningitidis using genetically engineered strains and a detergent-free purification process. Vaccine 28, 4810-4816 https://doi.org/10.1016/j.vaccine.2010.04.082
  17. Jing KJ, Guo YL and Ng IS (2019) Antigen-43-mediated surface display revealed in by different fusion sites and proteins. Bioresour and Bioprocess 6, 14
  18. Cheng KM, Zhao RF, Li Y et al (2021) Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology. Nat Commun 12, 2041
  19. Alves NJ, Turner KB, Medintz IL and Walper SA (2016) Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles. Sci Rep 6, 24866
  20. Kolling GL and Matthews KR (1999) Export of virulence genes and Shiga toxin by membrane vesicles of Escherichia coli O157:H7. Appl Environ Microbiol 65, 1843-1848 https://doi.org/10.1128/AEM.65.5.1843-1848.1999
  21. Tran F and Boedicker JQ (2017) Genetic cargo and bacterial species set the rate of vesicle-mediated horizontal gene transfer. Sci Rep 7, 8813
  22. Huang Y, Nieh MP, Chen W and Lei Y (2022) Outer membrane vesicles (OMVs) enabled bio-applications: a critical review. Biotechnol Bioeng 119, 34-47 https://doi.org/10.1002/bit.27965
  23. Cecil JD, O'Brien-Simpson NM, Lenzo JC et al (2017) Outer membrane vesicles prime and activate macrophage inflammasomes and cytokine secretion in vitro and in vivo. Front Immunol 8, 1017
  24. Mancini F, Rossi O, Necchi F and Micoli F (2020) OMV vaccines and the role of TLR agonists in immune response. Int J Mol Sci 21, 4416
  25. Song HW, Yoo G, Bong JH, Kang MJ, Lee SS and Pyun JC (2019) Surface display of sialyltransferase on the outer membrane of Escherichia coli and ClearColi. Enzyme Microb Technol 128, 1-8 https://doi.org/10.1016/j.enzmictec.2019.04.017
  26. van der Pol L, Stork M and van der Ley P (2015) Outer membrane vesicles as platform vaccine technology. Biotechnology Journal 10, 1689-1706 https://doi.org/10.1002/biot.201400395
  27. van de Waterbeemd B, Zomer G, Kaaijk P et al (2013) Improved production process for native outer membrane vesicle vaccine against Neisseria meningitidis. PLoS One 8, e65157
  28. Shi R, Dong Z, Ma C et al (2022) High-yield, magnetic harvesting of extracellular outer-membrane vesicles from Escherichia coli. Small 18, e2204350
  29. Collins SM and Brown AC (2021) Bacterial outer membrane vesicles as antibiotic delivery vehicles. Front in Immunol 12, 733064
  30. Saraswat I, Saha S and Mishra A (2023) A review of metallic nanostructures against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Toxicol Environ Health Sci 15, 315-324 https://doi.org/10.1007/s13530-023-00182-9
  31. Park KS, Svennerholm K, Crescitelli R et al (2023) Detoxified synthetic bacterial membrane vesicles as a vaccine platform against bacteria and SARS-CoV-2. J Nanobiotechnol 21, 156