DOI QR코드

DOI QR Code

Strongylocentrotus intermedius Extract Suppresses Adiposity by Inhibiting Adipogenesis and Promoting Adipocyte Browning via AMPK Activation in 3T3-L1 Cells

  • Lakshi A. Dayarathne (Department of Food and Nutrition, Pukyong National University) ;
  • Jasmadi (Department of Food and Nutrition, Pukyong National University) ;
  • Seok-Chun Ko (National Marine Biodiversity of Korea (MABIK)) ;
  • Mi-Jin Yim (National Marine Biodiversity of Korea (MABIK)) ;
  • Jeong Min Lee (National Marine Biodiversity of Korea (MABIK)) ;
  • Ji-Yul Kim (National Marine Biodiversity of Korea (MABIK)) ;
  • Gun-Woo Oh (National Marine Biodiversity of Korea (MABIK)) ;
  • Dae-Sung Lee (National Marine Biodiversity of Korea (MABIK)) ;
  • Won-Kyo Jung (Major of Biomedical Engineering, Division of Smart Healthcare, Pukyong National University) ;
  • Sei-Jung Lee (Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University) ;
  • Jae-Young Je (Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University)
  • Received : 2024.04.24
  • Accepted : 2024.06.25
  • Published : 2024.08.28

Abstract

The current study aimed to determine whether Strongylocentrotus intermedius (S. intermedius) extract (SIE) exerts anti-obesity potentials employing 3T3-L1 cells as in vitro model. Herein we reported that treatment of SIE for 6 days reduced lipid accretion and triglyceride content whereas it increased the release of free glycerol. The inhibited lipid accumulation and induced lipolysis were evidenced by the downregulation of lipogenesis proteins, such as fatty acid synthase and lipoprotein lipase, and the upregulation of hormone-sensitive lipase expression. Furthermore, the downregulation of adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein α, and sterol regulatory element-binding protein 1, highlights that reduced lipid accumulation is supported by lowering adipocyte differentiation. Additionally, treatment activates brown adipocyte phenotype in 3T3-L1 cells by inducing expression of brown adipose tissue-specific proteins, such as uncoupling protein 1 and peroxisome proliferator-activated receptor-γ coactivator 1α. Moreover, SIE induced the phosphorylation of AMP-activated protein kinase (AMPK). The pharmacological approach using AMPK inhibitor revealed that the restraining effect of SIE on adipogenesis and promotion of adipocyte browning were blocked. In GC-MS analysis, SIE was mainly composed of cholest-5-en-3-ol (36.71%) along with saturated and unsaturated fatty acids which have favorable anti-obesity potentials. These results reveal that SIE has the possibility as a lipid-lowering agent for the intervention of obesity.

Keywords

Acknowledgement

This research was granted by the National Marine Biodiversity Institute of Korea (MABIK) Research Program 2024M00500 and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A6A1A03039211).

References

  1. Kim SO, Sakchaisri K, Asami Y, Ryoo IJ, Choo SJ, Yoo ID, et al. 2014. Illudins C2 and C3 stimulate lipolysis in 3T3-L1 adipocytes and suppress adipogenesis in 3T3-L1 preadipocytes. J. Nat. Prod. 77: 744-750. 
  2. Cowherd RM, Lyle RE, McGehee Jr RE. 1999. Presented at the seminars in cell & developmental biology. 
  3. Torres-Villarreal D, Camacho A, Castro H, Ortiz-Lopez R, De la Garza A. 2019. Anti-obesity effects of kaempferol by inhibiting adipogenesis and increasing lipolysis in 3T3-L1 cells. J. Physiol. Biochem. 75: 83-88. 
  4. Kim GW, Lin JE, Blomain ES, Waldman SA. 2014. Antiobesity pharmacotherapy: new drugs and emerging targets. Clin. Pharm. Ther. 95: 53-66. 
  5. Sudhakar M, Sasikumar SJ, Silambanan S, Natarajan D, Ramakrishnan R, Nair AJ, et al. 2020. Chlorogenic acid promotes development of brown adipocyte-like phenotype in 3T3-L1 adipocytes. J. Funct. Foods 74: 104161. 
  6. Cinti S. 2012. The adipose organ at a glance. Dis. Models Mech. 5: 588-594. 
  7. Seo YJ, Jin H, Lee K, Song JH, Chei S, Oh HJ, et al. 2019. Cardamonin suppresses lipogenesis by activating protein kinase A-mediated browning of 3T3-L1 cells. Phytomedicine 65: 153064. 
  8. Lone J, Choi JH, Kim SW, Yun JW. 2016. Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes. J. Nutr. Biochem. 27: 193-202. 
  9. Lizcano F. 2019. The beige adipocyte as a therapy for metabolic diseases. Int. J. Mol. Sci. 20: 5058. 
  10. Wang S, Pan MH, Hung WL, Tung YC, Ho CT. 2019. From white to beige adipocytes: therapeutic potential of dietary molecules against obesity and their molecular mechanisms. Food Funct. 10: 1263-1279. 
  11. Yun JW. 2010. Possible anti-obesity therapeutics from nature-A review. Phytochemistry 71: 1625-1641. 
  12. Choi JH, Kim SW, Yu R, Yun JW. 2017. Monoterpene phenolic compound thymol promotes browning of 3T3-L1 adipocytes. Eur. J. Nutr. 56: 2329-2341. 
  13. Sibiya A, Jeyavani J, Sivakamavalli J, Ravi C, Divya M, Vaseeharan B. 2021. Bioactive compounds from various types of sea urchin and their therapeutic effects-a review. Reg. Stud. Mar. Sci. 44: 101760. 
  14. Ageenko NV, Kiselev KV, Odintsova NA. 2022. Quinoid pigments of sea urchins Scaphechinus mirabilis and Strongylocentrotus intermedius: biological activity and potential applications. Mar. Drugs 20: 611. 
  15. Yang J, Yi M, Pan J, Zhao J, Sun L, Lin X, et al. 2015. Sea urchin (Strongylocentrotus intermedius) polysaccharide enhanced BMP-2 induced osteogenic differentiation and its structural analysis. J. Funct. Foods 14: 519-528. 
  16. Sahara H, Ishikawa M, Takahashi N, Ohtani S, Sato N, Gasa S, et al. 1997. In vivo anti-tumour effect of 3'-sulphonoquinovosyl 1'-monoacylglyceride isolated from sea urchin (Strongylocentrotus intermedius) intestine. Br. J. Cancer 75: 324-332. 
  17. Rosyantari A, Prasedya E, Ilhami B, Martyasari N, Padmi H, Abidin A, et al. 2021. Presented at the IOP Conference Series: Earth and Environmental Science. 
  18. Farasat M, Khavari-Nejad R-A, Nabavi SMB, Namjooyan F. 2013. Antioxidant properties of two edible green seaweeds from northern coasts of the Persian Gulf. Jundishapur J. Nat. Pharm. Prod. 8: 47. 
  19. Rayalam S, Della-Fera MA, Baile CA. 2008. Phytochemicals and regulation of the adipocyte life cycle. J. Nutr. Biochem. 19: 717-726. 
  20. Han X, Choi SI, Men X, Lee SJ, Jin H, Oh HJ, et al. 2022. Anti-obesity activities of standardized Ecklonia stolonifera extract in 3T3-L1 Preadipocytes and high-fat-diet-fed ICR mice. Appl. Sci. 12: 5115. 
  21. Hu X, Tao N, Wang X, Xiao J, Wang M. 2016. Marine-derived bioactive compounds with anti-obesity effect: a review. J. Funct. Foods 21: 372-387. 
  22. Awang AN, Ng JL, Matanjun P, Sulaiman MR, Tan TS, Ooi YBH. 2014. Anti-obesity property of the brown seaweed, Sargassum polycystum using an in vivo animal model. J. Appl. Phycol. 26: 1043-1048. 
  23. Okada T, Mizuno Y, Sibayama S, Hosokawa M, Miyashita K. 2011. Antiobesity effects of undaria lipid capsules prepared with scallop phospholipids. J. Food Sci. 76: H2-H6. 
  24. Wan-Loy C, Siew-Moi P. 2016. Marine algae as a potential source for anti-obesity agents. Mar. Drugs 14: 222. 
  25. Fajas L, Fruchart JC, Auwerx J. 1998. Transcriptional control of adipogenesis. Curr. Opin. Cell Biol. 10: 165-173. 
  26. Jeon T, Hwang SG, Hirai S, Matsui T, Yano H, Kawada T, et al. 2004. Red yeast rice extracts suppress adipogenesis by down-regulating adipogenic transcription factors and gene expression in 3T3-L1 cells. Life Sci. 75: 3195-3203. 
  27. Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X, et al. 1993. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 75: 187-197. 
  28. Spiegelman BM, Flier JS. 2001. Obesity and the regulation of energy balance. Cell 104: 531-543. 
  29. Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, et al. 2004. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306: 1383-1386. 
  30. Poher AL, Altirriba J, Veyrat-Durebex C, Rohner-Jeanrenaud F. 2015. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Front. physiol. 6: 4. 
  31. Liu M, Zheng M, Cai D, Xie J, Jin Z, Liu H, et al. 2019. Zeaxanthin promotes mitochondrial biogenesis and adipocyte browning via AMPKα1 activation. Food Funct. 10: 2221-2233. 
  32. Jornayvaz FR, Shulman GI. 2010. Regulation of mitochondrial biogenesis. Essays Biochem. 47: 69-84. 
  33. Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N, et al. 2007. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc. Natl. Acad. Sci. USA 104: 4401-4406. 
  34. Yan M, Audet-Walsh E, Manteghi S, Dufour CR, Walker B, Baba M, et al. 2016. Chronic AMPK activation via loss of FLCN induces functional beige adipose tissue through PGC-1α/ERRα. Genes Dev. 30: 1034-1046. 
  35. Yang Q, Liang X, Sun X, Zhang L, Fu X, Rogers CJ, et al. 2016. AMPK/α-ketoglutarate axis dynamically mediates DNA demethylation in the Prdm16 promoter and brown adipogenesis. Cell Metab. 24: 542-554. 
  36. Seo YJ, Kim KJ, Choi J, Koh EJ, Lee BY. 2018. Spirulina maxima extract reduces obesity through suppression of adipogenesis and activation of browning in 3T3-L1 cells and high-fat diet-induced obese mice. Nutrients 10: 712. 
  37. Dayarathne LA, Ranaweera SS, Natraj P, Rajan P, Lee YJ, Han C-H. 2021. Restoration of the adipogenic gene expression by naringenin and naringin in 3T3-L1 adipocytes. J. Vet. Sci. 22: e55. 
  38. Ahn J, Lee H, Kim S, Park J, Ha T. 2008. The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem. Biophys. Res. Commun. 373: 545-549. 
  39. Hardie DG, Hawley SA. 2001. AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays 23: 1112-1119. 
  40. Chen S, Li Z, Li W, Shan Z, Zhu W. 2011. Resveratrol inhibits cell differentiation in 3T3-L1 adipocytes via activation of AMPK. Can. J. Physiol. Pharmacol. 89: 793-799. 
  41. Berquin IM, Min Y, Wu R, Wu J, Perry D, Cline JM, et al. 2007. Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids. J. Clin. Invest. 117: 1866-1875. 
  42. Juturu V. 2008. Omega-3 fatty acids and the cardiometabolic syndrome. J. Cardiometab. Syndr. 3: 244-253. 
  43. Wang H, Zhao W, Ding B, Zhang Y, Huang X, Liu X, et al. 2021. Comparative lipidomics profiling of the sea urchin, Strongylocentrotus intermedius. Comp. Biochem. Physiol. - D: Genom. Proteom. 40: 100900. 
  44. Loison C, Mendy F, Serougne C, Lutton C. 2002. Dietary myristic acid modifies the HDL-cholesterol concentration and liver scavenger receptor BI expression in the hamster. Br. J. Nutr. 87: 199-210. 
  45. Berlanga A, Guiu-Jurado E, Porras JA, Auguet T. 2014. Molecular pathways in non-alcoholic fatty liver disease. Clin. Exp. Gastroenterol. 7: 221-239. 
  46. Murru E, Manca C, Carta G, Banni S. 2022. Impact of dietary palmitic acid on lipid metabolism. Front. Nutr. 9: 861664. 
  47. Chumphoochai K, Manohong P, Niamnont N, Tamtin M, Sobhon P, Meemon K. 2023. Anti-obesity effects of marine macroalgae extract Caulerpa lentillifera in a Caenorhabditis elegans model. Mar. Drugs 21: 577. 
  48. Dayarathne LA, Ko SC, Yim MJ, Lee JM, Kim JY, Oh GW, et al. 2024. Brown algae Dictyopteris divaricata attenuates adipogenesis by modulating adipocyte differentiation and promoting lipolysis through heme oxygenase-1 activation in 3T3-L1 cells. Mar. Drugs 22: 91. 
  49. Salama A, Amin MM, Hassan A. 2023. Effects of oleic acid and/or exercise on diet-induced thermogenesis and obesity in rats: involvement of beige adipocyte differentiation and macrophage M1 inhibition. Res. Pharm. Sci. 18: 219-230. 
  50. Mutmainannah SN. 2023. The potency of water clover (Marsilea crenata C. Presl.) leaves as anticholesterolemic functional foods through in silico study. J. Ilm. Perikan. dan Kelaut. 15: 131-141. 
  51. Patterson GW, Nes WD. 1991. Physiology and Biochemistry of Sterols, The American Oil Chemists Society. 
  52. Valenzuela A, Sanhueza J, Nieto S. 2003. Cholesterol oxidation: health hazard and the role of antioxidants in prevention. Biol. Res. 36: 291-302. 
  53. Berger S, Raman G, Vishwanathan R, Jacques PF, Johnson EJ. 2015. Dietary cholesterol and cardiovascular disease: a systematic review and meta-analysis. Am. J. Clin. Nutr. 102: 276-294. 
  54. Yamamoto R, Minami H, Matsusaki H, Sakashita M, Morita N, Nishimiya O, et al. 2018. Consumption of the edible sea urchin Mesocentrotus nudus attenuates body weight gain and hepatic lipid accumulation in mice. J. Funct. Foods 47: 40-47. 
  55. Gonzalez M, Caride B, Lamas MA, Taboada MC. 2000. Effects of sea urchin-based diets on serum lipid composition and on intestinal enzymes in rats. J. Physiol. Biochem. 56: 347-354. 
  56. Kishimoto Y, Taguchi C, Suzuki-Sugihara N, Saita E, Usuda M, Wang W, et al. 2016. The effect of the consumption of egg on serum lipids and antioxidant status in healthy subjects. J. Nutr. Sci. Vitaminol. 62: 361-365.