DOI QR코드

DOI QR Code

Paenibacillus gyeongsangnamensis sp. nov., Isolated from Soil

  • Hyosun Lee (Department of Biological Science, College of Science and Engineering, Sangji University) ;
  • Dhiraj Kumar Chaudhary (Department of Microbiology, Pukyong National University) ;
  • Dong-Uk Kim (Department of Biological Science, College of Science and Engineering, Sangji University)
  • Received : 2024.04.23
  • Accepted : 2024.05.31
  • Published : 2024.08.28

Abstract

A Gram-stain-positive, aerobic, white-coloured, rod-shaped bacteria, designated as a strain dW9T, was isolated from soil. Strain dW9T was catalase-positive and oxidase-negative. Strain dW9T grew at temperature of 20-37℃ and at pH of 5.0-7.0. Phylogenetic and 16S rRNA gene analysis indicated that strain dW9T belonged to the genus Paenibacillus with its closest relative being Paenibacillus filicis S4T (97.4% sequence similarity). The genome size of dW9T was 7,787,916 bp with DNA G+C G+C content of 51.3%. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values of dW9T with its closest relatives were found to be <22.0% and <74.0%, respectively. The only respiratory quinone was MK-7, and the major fatty acids were antiso-C15:0 and iso-C16:0. Overall, the comprehensive taxonomic analysis revealed that strain dW9T met all the fundamental criteria to be classified as a novel species within the genus Paenibacillus. Accordingly, we propose the name Paenibacillus gyeongsangnamensis sp. nov., with the type strain dW9T (=KCTC 43431T =NBRC 116022T).

Keywords

Acknowledgement

This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR202203112).

References

  1. Ash C, Priest FG, Collins MD. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test: proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64: 253-260. 
  2. Tindall B. 2000. What is the type species of the genus Paenibacillus? Request for an opinion. Int. J. Syst. Evol. Microbiol. 50: 939-940. 
  3. Wu M, Zong Y, Guo W, Wang G, Li M. 2018. Paenibacillus montanisoli sp. nov., isolated from mountain area soil. Int. J. Syst. Evol. Microbiol. 68: 3569-3575. 
  4. Baik KS, Lim CH, Choe HN, Kim EM, Seong CN. 2011. Paenibacillus rigui sp. nov., isolated from a freshwater wetland. Int. J. Syst. Evol. Microbiol. 61: 529-534. 
  5. Sadaf K, Tushar L, Nirosha P, Podile A, Sasikala C, Ramana CV. 2016. Paenibacillus arachidis sp. nov., isolated from groundnut seeds. Int. J. Syst. Evol. Microbiol. 66: 2923-2928. 
  6. Wu YF, Wu QL, Liu SJ. 2013. Paenibacillustaihuensis sp. nov., isolated from an eutrophic lake. Int. J. Syst. Evol. Microbiol. 63: 3652-3658. 
  7. Kampfer P, Busse H-J, McInroy JA, Clermont D, Criscuolo A, Glaeser SP. 2021. Paenibacillus allorhizosphaerae sp. nov., from soil of the rhizosphere of Zea mays. Int. J. Syst. Evol. Microbiol. 71: 005051. 
  8. Kampfer P, Lipski A, McInroy JA, Clermont D, Lamothe L, Glaeser SP, et al. 2023. Paenibacillus auburnensis sp. nov. and Paenibacillus pseudetheri sp. nov., isolated from the rhizosphere of Zea mays. Int. J. Syst. Evol. Microbiol. 73: 005808. 
  9. Kaur N, Seuylemezian A, Patil PP, Patil P, Krishnamurti S, Varelas J, et al. 2018. Paenibacillus xerothermodurans sp. nov., an extremely dry heat resistant spore forming bacterium isolated from the soil of Cape Canaveral, Florida. Int. J. Syst. Evol. Microbiol. 68: 3190-3196. 
  10. Kong BH, Liu QF, Liu M, Liu Y, Liu L, Li CL, et al. 2013. Paenibacillus typhae sp. nov., isolated from roots of Typha angustifolia L. Int. J. Syst. Evol. Microbiol. 63: 1037-1044. 
  11. Liu H, Lu L, Wang S, Yu M, Cao X, Tang S, et al. 2021. Paenibacillus tianjinensis sp. nov., isolated from corridor air. Int. J. Syst. Evol. Microbiol. 71: 005158. 
  12. Cho ES, Hwang CY, Kwon HW, Seo MJ. 2022. Paenibacillus mellifer sp. nov., isolated from gut of the honey bee Apis mellifera. Arch. Microbiol. 204: 558. 
  13. Kim BC, Kim MN, Lee KH, Kwon SB, Bae KS, Shin KS. 2009. Paenibacillus filicis sp. nov., isolated from the rhizosphere of the fern. J. Microbiol. 47: 524-529. 
  14. Yang RJ, Zhou D, Wang QM, Wang XH, Zhang WJ, Zhuang L, et al. 2021. Paenibacillus puerhi sp. nov., isolated from the rhizosphere soil of Pu-erh tea plants (Camellia sinensis var. assamica). Arch. Microbiol. 203: 1375-1382. 
  15. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74: 2461-2470. 
  16. Chaudhary DK, Kim DU, Kim D, Kim J. 2019. Flavobacterium petrolei sp. nov., a novel psychrophilic, diesel-degrading bacterium isolated from oil-contaminated Arctic soil. Sci. Rep. 9: 4134. 
  17. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617. 
  18. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547. 
  19. Felsenstein J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17: 368-376. 
  20. Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. 
  21. Fitch WM. 1971. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Biol. 20: 406-416. 
  22. Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791. 
  23. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. 
  24. Kajitani R, Yoshimura D, Okuno M, Minakuchi Y, Kagoshima H, Fujiyama A, et al. 2019. Platanus-allee is a de novo haplotype assembler enabling a comprehensive access to divergent heterozygous regions. Nat. Commun. 10: 1702. 
  25. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. 2012. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19: 455-477. 
  26. Lee I, Chalita M, Ha SM, Na SI, Yoon SH, Chun J. 2017. ContEst16S: An algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int. J. Syst. Evol. Microbiol. 67: 2053-2057. 
  27. Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7: 203-214. 
  28. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST Server: Rapid annotations using subsystems technology. BMC Genomics 9: 75. 
  29. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44: 6614-6624. 
  30. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. 2019. antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47: W81-W87. 
  31. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60. 
  32. Yoon SH, Ha Sm, Lim J, Kwon S, Chun J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110: 1281-1286. 
  33. Meier-Kolthoff JP, Goker M. 2019. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10: 2182. 
  34. Lefort V, Desper R, Gascuel O. 2015. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32: 2798-2800. 
  35. Oktari A, Supriatin Y, Kamal M, Syafrullah H. 2017. Presented at the Journal of Physics: Conference Series. 
  36. Lee H, Chaudhary DK, Lim OB, Lee KE, Cha IT, Chi WJ, et al. 2023. Paenibacillus caseinilyticus sp. nov., isolated forest soil. Int. J. Syst. Evol. Microbiol. 73: 006171. 
  37. Smibert RM, Krieg NR. 1994. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds.), Methods for general and molecular bacteriology, pp. 607-654. ASM Press, Washington D.C., USA. 
  38. Sasser M. 1990. Bacterial identification by gas chromatographic analysis of fatty acid methyl esters (GC-FAME) (MIDI Technical Note 101. Newark, DE: MIDI Inc. 
  39. Staneck JL, Roberts GD. 1974. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl. Microbiol. 28: 226-231. 
  40. Collins MD, Jones D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol. Rev. 45: 316-354. 
  41. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, et al. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2: 233-241. 
  42. Komagata K, Suzuki KI. 1988. 4 Lipid and cell-wall analysis in bacterial systematics. Method Microbiol. 19: 161-207. 
  43. Stackebrandt E. 2006. Taxonomic parameters revisited: Tarnished gold standards. Microbiol. Today 33: 152-155. 
  44. Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, et al. 2008. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst. Appl. Microbiol. 31: 241-250. 
  45. Richter M, Rossello-Mora R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106: 19126-19131. 
  46. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, et al. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Evol. Microbiol. 37: 463-464. 
  47. Kim J, Chhetri G, Kim I, So Y, Seo T. 2022. Paenibacillus agilis sp. nov., Paenibacillus cremeus sp. nov. and Paenibacillus terricola sp. nov., isolated from rhizosphere soils. Int. J. Syst. Evol. Microbiol. 72: 005640. 
  48. Yoon JH, Seo WT, Shin YK, Kho YH, Kang KH, Park YH. 2002. Paenibacillus chinjuensis sp. nov., a novel exopolysaccharideproducing bacterium. Int. J. Syst. Evol. Microbiol. 52: 415-421. 
  49. Hu XF, Li SX, Wu JG, Wang JF, Fang QL, Chen JS. 2010. Transfer of Bacillus mucilaginosus and Bacillus edaphicus to the genus Paenibacillus as Paenibacillus mucilaginosus comb. nov. and Paenibacillus edaphicus comb. nov. Int. J. Syst. Evol. Microbiol. 60: 8-14.