DOI QR코드

DOI QR Code

Mutations Affecting Cellular Levels of Cobalamin (Vitamin B12) Confer Tolerance to Bactericidal Antibiotics in Burkholderia cenocepacia

  • Dongju Lee (Division of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University) ;
  • Jongwook Park (Division of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University) ;
  • Heenam Stanley Kim (Division of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University)
  • Received : 2024.06.16
  • Accepted : 2024.06.26
  • Published : 2024.08.28

Abstract

The Burkholderia cepacia complex (Bcc) consists of opportunistic pathogens known to cause pneumonia in immunocompromised individuals, especially those with cystic fibrosis. Treating Bcc pneumonia is challenging due to the pathogens' high multidrug resistance. Therefore, inhalation therapy with tobramycin powder, which can achieve high antibiotic concentrations in the lungs, is a promising treatment option. In this study, we investigated potential mechanisms that could compromise the effectiveness of tobramycin therapy. By selecting for B. cenocepacia survivors against tobramycin, we identified three spontaneous mutations that disrupt a gene encoding a key enzyme in the biosynthesis of cobalamin (Vitamin B12). This disruption may affect the production of succinyl-CoA by methylmalonyl-CoA mutase, which requires adenosylcobalamin as a cofactor. The depletion of cellular succinyl-CoA may impact the tricarboxylic acid (TCA) cycle, which becomes metabolically overloaded upon exposure to tobramycin. Consequently, the mutants exhibited significantly reduced reactive oxygen species (ROS) production. Both the wild-type and mutants showed tolerance to tobramycin and various other bactericidal antibiotics under microaerobic conditions. This suggests that compromised ROS-mediated killing, due to the impacted TCA cycle, underlies the mutants' tolerance to bactericidal antibiotics. The importance of ROS-mediated killing and the potential emergence of mutants that evade it through the depletion of cobalamin (Vitamin B12) provide valuable insights for developing strategies to enhance antibiotic treatments of Bcc pneumonia.

Keywords

Acknowledgement

This study was supported by the grants NRF-2018M3A9F3055923 and NRF-2015M3C9A4053393 from the National Research Foundation (NRF) of the Republic of Korea.

References

  1. Coenye T, Vandamme P, Govan JR, LiPuma JJ. 2001. Taxonomy and identification of the Burkholderia cepacia complex. J. Clin. Microbiol. 39: 3427-3436. 
  2. Devanga Ragupathi NK, Veeraraghavan B. 2019. Accurate identification and epidemiological characterization of Burkholderia cepacia complex: an update. Ann. Clin. Microbiol. Antimicrob. 18: 7. 
  3. Leslie-Mariana MR, Rodriguez-Cisneros M, Jeniffer-Chris KD, Fernando-Uriel RR, Antonio IJ. 2022. Burkholderia orbicola sp. nov., a novel species within the Burkholderia cepacia complex. Arch. Microbiol. 204: 178. 
  4. Somayaji R, Yau YCW, Tullis E, LiPuma JJ, Ratjen F, Waters V. 2020. Clinical outcomes associated with Burkholderia cepacia complex infection in patients with cystic fibrosis. Ann. Am. Thorac. Soc. 17: 1542-1548. 
  5. Klimko A, Brandt A, Brustan MI, Balgradean M. 2020. A case report of cystic fibrosis complicated by Burkholderia Cepacia and cutaneous vasculitis. Cureus 12: e8158. 
  6. Marrs ECL, Perry A, Perry JD. 2021. Evaluation of three culture media for isolation of Burkholderia cepacia complex from respiratory samples of patients with cystic fibrosis. Microorganisms 9: 2604. 
  7. Sousa SA, Seixas AMM, Marques JMM, Leitao JH. 2021. Immunization and immunotherapy approaches against Pseudomonas aeruginosa and Burkholderia cepacia complex infections. Vaccines 9: 670. 
  8. Segonds C, Heulin T, Marty N, Chabanon G. 1999. Differentiation of Burkholderia species by PCR-restriction fragment length polymorphism analysis of the 16S rRNA gene and application to cystic fibrosis isolates. J. Clin. Microbiol. 37: 2201-2208. 
  9. Jones A, Dodd M, Govan J, Barcus V, Doherty C, Morris J, et al. 2004. Burkholderia cenocepacia and Burkholderia multivorans: influence on survival in cystic fibrosis. Thorax 59: 948. 
  10. Drevinek P, Mahenthiralingam E. 2010. Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin. Microbiol. Infect. 16: 821-830. 
  11. Regan KH, Bhatt J. 2019. Eradication therapy for Burkholderia cepacia complex in people with cystic fibrosis. Cochrane Database Syst. Rev. 4: Cd009876. 
  12. Sfeir MM. 2018. Burkholderia cepacia complex infections: More complex than the bacterium name suggest. J. Infect. 77: 166-170. 
  13. Van Dalem A, Herpol M, Echahidi F, Peeters C, Wybo I, De Wachter E, et al. 2018. In vitro susceptibility of Burkholderia cepacia complex isolated from cystic fibrosis patients to ceftazidime-avibactam and ceftolozane-tazobactam. Antimicrob. Agents Chemother. 62: e00590-18. 
  14. Gutierrez Santana JC, Coria Jimenez VR. 2024. Burkholderia cepacia complex in cystic fibrosis: critical gaps in diagnosis and therapy. Ann. Med. 56: 2307503. 
  15. Kitt H, Lenney W, Gilchrist F. 2016. Two case reports of the successful eradication of new isolates of Burkholderia cepacia complex in children with cystic fibrosis. BMC Pharmacol. Toxicol. 17: 14. 
  16. Garcia BA, Carden JL, Goodwin DL, Smith TA, Gaggar A, Leon K, et al. 2018. Implementation of a successful eradication protocol for Burkholderia cepacia complex in cystic fibrosis patients. BMC Pulm. Med. 18: 35. 
  17. Taccetti G, Francalanci M, Pizzamiglio G, Messore B, Carnovale V, Cimino G, et al. 2021. Cystic fibrosis: recent insights into inhaled antibiotic treatment and future perspectives. Antibiotics 10: 338. 
  18. Aaron SD, Ferris W, Henry DA, Speert DP, MacDONALD NE. 2000. Multiple combination bactericidal antibiotic testing for patients with cystic fibrosis infected with Burkholderia cepacia. Am. J. Respir. Crit. Care Med. 161: 1206-1212. 
  19. Aaron SD, Vandemheen KL, Ferris W, Fergusson D, Tullis E, Haase D, et al. 2005. Combination antibiotic susceptibility testing to treat exacerbations of cystic fibrosis associated with multiresistant bacteria: a randomised, double-blind, controlled clinical trial. Lancet 366: 463-471. 
  20. Waters V, Yau Y, Beaudoin T, Wettlaufer J, Tom SK, McDonald N, et al. 2017. Pilot trial of tobramycin inhalation powder in cystic fibrosis patients with chronic Burkholderia cepacia complex infection. J. Cyst. Fibros. 16: 492-495. 
  21. Konstan MW, Flume PA, Kappler M, Chiron R, Higgins M, Brockhaus F, et al. 2011. Safety, efficacy and convenience of tobramycin inhalation powder in cystic fibrosis patients: the EAGER trial. J. Cyst. Fibros. 10: 54-61. 
  22. Middleton P, Kidd T, Williams B. 2005. Combination aerosol therapy to treat Burkholderia cepacia complex. Eur. Respir. J. 26: 305-308. 
  23. Ball R, Brownlee K, Duff A, Denton M, Conway S, Lee T. 2010. Can Burkholderia cepacia complex be eradicated with nebulised Amiloride and TOBI? J. Cyst. Fibros. 9: 73-74. 
  24. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. 2007. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130: 797-810. 
  25. Kohanski MA, Dwyer DJ, Collins JJ. 2010. How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol. 8: 423-435. 
  26. Hong Y, Zeng J, Wang X, Drlica K, Zhao X. 2019. Post-stress bacterial cell death mediated by reactive oxygen species. Proc. Natl. Acad. Sci. USA 116: 10064-10071. 
  27. Hoeksema M, Brul S, ter Kuile Benno H. 2018. Influence of reactive oxygen species on de novo acquisition of resistance to bactericidal antibiotics. Antimicrob. Agents Chemother. 62: 10.1128/aac.02354-02317. 
  28. Sass A, Marchbank A, Tullis E, LiPuma JJ, Mahenthiralingam E. 2011. Spontaneous and evolutionary changes in the antibiotic resistance of Burkholderia cenocepacia observed by global gene expression analysis. BMC Genomics 12: 373. 
  29. Keen N, Tamaki S, Kobayashi D, Trollinger D. 1988. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70: 191-197. 
  30. Conrad K, Clarke M, Robertson R, Macdougall-Shackleton E. 1989. Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press. 
  31. Simon R, Priefer U, Puhler A. 1983. Vector plasmids for in-vivo and in-vitro manipulations of gram-negative bacteria. Proc. Life Scis. 98-106. 
  32. Yi H, Song H, Hwang J, Kim K, Nierman WC, Kim HS. 2014. The tandem repeats enabling reversible switching between the two phases of β-Lactamase substrate spectrum. PLoS Genet. 10: e1004640. 
  33. Wiegand I, Hilpert K, Hancock RE. 2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3: 163-175. 
  34. Mahenthiralingam E, Coenye T, Chung JW, Speert DP, Govan JR, Taylor P, et al. 2000. Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J. Clin. Microbiol. 38: 910-913. 
  35. Fang H, Li D, Kang J, Jiang P, Sun J, Zhang D. 2018. Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12. Nat. Commun. 9: 4917. 
  36. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. 2003. Comparative genomics of the Vitamin B12 metabolism and regulation in prokaryotes. J. Biol. Chem. 278: 41148-41159. 
  37. Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, et al. 2019. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 17: 441-448. 
  38. Lewis K. 2010. Persister Cells. Ann. Rev. Microbiol. 64: 357-372. 
  39. Mancia F, Keep NH, Nakagawa A, Leadlay PF, McSweeney S, Rasmussen B, et al. 1996. How coenzyme B12 radicals are generated: the crystal structure of methylmalonyl-coenzyme A mutase at 2 A resolution. Structure 4: 339-350. 
  40. Belenky P, Ye JD, Porter CB, Cohen NR, Lobritz MA, Ferrante T, et al. 2015. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Rep. 13: 968-980. 
  41. Meylan S, Porter CBM, Yang JH, Belenky P, Gutierrez A, Lobritz MA, et al. 2017. Carbon sources tune antibiotic susceptibility in Pseudomonas aeruginosa via tricarboxylic acid cycle control. Cell Chem. Biol. 24: 195-206. 
  42. Tack KJ, Sabath L. 1985. Increased minimum inhibitory concentrations with anaerobiasis for tobramycin, gentamicin, and amikacin, compared to latamoxef, piperacillin, chloramphenicol, and clindamycin. Chemotherapy 31: 204-210. 
  43. McCaughey G, McKevitt M, Elborn JS, Tunney MM. 2012. Antimicrobial activity of fosfomycin and tobramycin in combination against cystic fibrosis pathogens under aerobic and anaerobic conditions. J. Cyst. Fibros 11: 163-172. 
  44. McCaughey G, Diamond P, Elborn JS, McKevitt M, Tunney MM. 2013. Resistance development of cystic fibrosis respiratory pathogens when exposed to fosfomycin and tobramycin alone and in combination under aerobic and anaerobic conditions. PLoS One 8: e69763.