DOI QR코드

DOI QR Code

Functional Identification and Genetic Analysis of O-Antigen Gene Clusters of Food-Borne Pathogen Yersinia enterocolitica O:10 and Other Uncommon Serotypes, Further Revealing Their Virulence Profiles

  • Bin Hu (Shandong Center for Disease Control and Prevention) ;
  • Jing Wang (TEDA Institute of Biological Sciences and Biotechnology, Nankai University) ;
  • Linxing Li (TEDA Institute of Biological Sciences and Biotechnology, Nankai University) ;
  • Qin Wang (Disease Prevention and Control Center of Ganzhou District) ;
  • Jingliang Qin (TEDA Institute of Biological Sciences and Biotechnology, Nankai University) ;
  • Yingxin Chi (Shandong Center for Disease Control and Prevention) ;
  • Junxiang Yan (TEDA Institute of Biological Sciences and Biotechnology, Nankai University) ;
  • Wenkui Sun (Shandong Center for Disease Control and Prevention) ;
  • Boyang Cao (TEDA Institute of Biological Sciences and Biotechnology, Nankai University) ;
  • Xi Guo (TEDA Institute of Biological Sciences and Biotechnology, Nankai University)
  • 투고 : 2024.02.26
  • 심사 : 2024.06.25
  • 발행 : 2024.08.28

초록

Yersinia enterocolitica is a globally distributed food-borne gastrointestinal pathogen. The O-antigen variation-determined serotype is an important characteristic of Y. enterocolitica, allowing intraspecies classification for diagnosis and epidemiology purposes. Among the 11 serotypes associated with human yersiniosis, O:3, O:5,27, O:8, and O:9 are the most prevalent, and their O-antigen gene clusters have been well defined. In addition to the O-antigen, several virulence factors are involved in infection and pathogenesis of Y. enterocolitica strains, and these are closely related to their biotypes, reflecting pathogenic properties. In this study, we identified the O-AGC of a Y. enterocolitica strain WL-21 of serotype O:10, and confirmed its functionality in O-antigen synthesis. Furthermore, we analyzed in silico the putative O-AGCs of uncommon serotypes, and found that the O-AGCs of Y. enterocolitica were divided into two genetic patterns: (1) O-AGC within the hemH-gsk locus, possibly synthesizing the O-antigen via the Wzx/Wzy dependent pathway, and (2) O-AGC within the dcuC-galU-galF locus, very likely assembling the O-antigen via the ABC transporter dependent pathway. By screening the virulence genes against genomes from GenBank, we discovered that strains representing different serotypes were grouped according to different virulence gene profiles, indicating strong links between serotypes and virulence markers and implying an interaction between them and the synergistic effect in pathogenicity. Our study provides a framework for further research on the origin and evolution of O-AGCs from Y. enterocolitica, as well as on differences in virulent mechanisms among distinct serotypes.

키워드

과제정보

This work was supported by the Shandong Provincial Natural Science Foundation General Project (grant number ZR2022MH318), the Tianjin Municipal Natural Science Foundation (grant number 17JCYBJC24300), and the National Key Program for Infectious Diseases of China (grant number 2017ZX10303405).

참고문헌

  1. Sabina Y, Rahman A, Ray RC, Montet D. 2011. Yersinia enterocolitica: mode of transmission, molecular insights of virulence, and pathogenesis of infection. J. Pathog. 2011: 429069. 
  2. Bottone EJ. 1997. Yersinia enterocolitica: the charisma continues. Clin. Microbiol. Rev. 10: 257-276. 
  3. Bancerz-Kisiel A, Szczerba-Turek A, Platt-Samoraj A, Michalczyk M, Szweda W, 2018. Characterisation of ail-positive Yersinia enterocolitica of different biotypes using HRMA. Int. J. Food Microbiol. 269: 46-51. 
  4. Bottone EJ. 2015. Yersinia enterocolitica: revisitation of an enduring human pathogen. Clin. Microbiol. Newslett. 37: 1-8. 
  5. Fabrega A, Vila J. 2012. Yersinia enterocolitica: pathogenesis, virulence and antimicrobial resistance. Enferm. Infect. Microbiol. Clin. 30: 24-32. 
  6. Whitfield C, Williams DM, Kelly SD. 2020. Lipopolysaccharide O-antigens-bacterial glycans made to measure. J. Biol. Chem. 295: 10593-10609. 
  7. Knirel Y, Valvano M. Bacterial Lipopolysaccharides. Vienna: Springer. 2011: 1-20. 
  8. Liu B, Furevi A, Perepelov AV, Guo X, Cao H, Wang Q, et al. 2020. Structure and genetics of Escherichia coli O antigens. FEMS Microbiol. Rev. 44: 655-683. 
  9. Raymond CK, Sims EH, Kas A, Spencer DH, Kutyavin TV, Ivey RG, et al. 2002. Genetic variation at the O-antigen biosynthetic locus in Pseudomonas aeruginosa. J. Bacteriol. 184: 3614-3622. 
  10. Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Reeves PR, et al. 2014. Structural diversity in Salmonella O antigens and its genetic basis. FEMS Microbiol. Rev. 38: 56-89. 
  11. Islam ST, Lam JS. 2014. Synthesis of bacterial polysaccharides via the Wzx/Wzy-dependent pathway. Can. J. Microbiol. 60: 697-716. 
  12. Greenfield LK, Whitfield C. 2012. Synthesis of lipopolysaccharide O-antigens by ABC transporter-dependent pathways. Carbohydr. Res. 356: 12-24. 
  13. Gorshkova RP, Kalmykova EN, Isakov VV, Ovodov YS. 1985. Structural studies on O-specific polysaccharides of lipopolysaccharides from Yersinia enterocolitica serovars O:1,2a,3, O:2a,2b,3 and O:3. Eur. J. Biochem. 150: 527-531. 
  14. Gorshkova RP, Kalmykova EN, Isakov VV, Ovodov YS. 1986. Structural studies on O-specific polysaccharides of lipopolysaccharides from Yersinia enterocolitica serovars O:5 and O:5,27. Eur. J. Biochem. 156: 391-397. 
  15. Kalmykova EN, Gorshkova RP, Isakov VV, Ovodov, I.uS. 1988. The structure of O-specific polysaccharide from Yersinia enterocolitica serotype O:6.31 lipopolysaccharide. Bioorg. Khim. 14: 652-657. 
  16. Zhang L, Radziejewska-Lebrecht J, Krajewska-Pietrasik D, Toivanen P, Skurnik M. 1997. Molecular and chemical characterization of the lipopolysaccharide O-antigen and its role in the virulence of Yersinia enterocolitica serotype O:8. Mol. Microbiol. 23: 63-76. 
  17. Caroff M, Bundle DR, Perry MB. 1984. Structure of the O-chain of the phenol-phase soluble cellular lipopolysaccharide of Yersinia enterocolitica serotype O:9. Eur. J. Biochem. 139: 195-200. 
  18. Gorshkova RP, Isakov VV, Kalmykova EN, Ovodov YS. 1995. Structural studies of O-specific polysaccharide chains of the lipopolysaccharide from Yersinia Enterocolitica serovar O:10. Carbohydr. Res. 268: 249-255. 
  19. Garzetti D, Susen R, Fruth A, Tietze E, Heesemann J, Rakin A. 2014. A molecular scheme for Yersinia enterocolitica patho-serotyping derived from genome-wide analysis. Int. J. Med. Microbiol. 304: 275-283. 
  20. Skurnik M, Bengoechea JA. 2003. The biosynthesis and biological role of lipopolysaccharide O-antigens of pathogenic yersiniae. Carbohydr. Res. 338: 2521-2529. 
  21. Skurnik M, Venho R, Toivanen P, al-Hendy A. 1995. A novel locus of Yersinia enterocolitica serotype O3 involved in lipopolysaccharide outer core biosynthesis. Mol. Microbiol. 17: 575-594. 
  22. Jacobsen NR, Bogdanovich T, Skurnik M, Lubeck PS, Ahrens P, Hoorfar J. 2005. A real-time PCR assay for the specific identification of serotype O:9 of Yersinia enterocolitica. J. Microbiol. Methods 63: 151-156. 
  23. Rusak LA, de Castro Lisboa Pereira R, Freitag IG, Hofer CB, Hofer E, Asensi MD, et al. 2018. Rapid detection of Yersinia enterocolitica serotype O:3 using a duplex PCR assay. J. Microbiol. Methods 154: 107-111. 
  24. Bottone EJ. 1999. Yersinia enterocolitica: overview and epidemiologic correlates. Microbes Infect. 1: 323-333. 
  25. Hunter E, Greig DR, Schaefer U, Wright MJ, Dallman TJ, McNally A, Jenkins C. 2019. Identification and typing of Yersinia enterocolitica and Yersinia pseudotuberculosis isolated from human clinical specimens in England between 2004 and 2018. J. Med. Microbiol. 68: 538-548. 
  26. Bengoechea JA, Najdenski H, Skurnik M. 2004. Lipopolysaccharide O antigen status of Yersinia enterocolitica O:8 is essential for virulence and absence of O antigen affects the expression of other Yersinia virulence factors. Mol. Microbiol. 52: 451-469. 
  27. al-Hendy A, Toivanen P, Skurnik M. 1992. Lipopolysaccharide O side chain of Yersinia enterocolitica O:3 is an essential virulence factor in an orally infected murine model. Infect. Immun. 60: 870-875. 
  28. Seabaugh JA, Anderson DM. 2024. Pathogenicity and virulence of Yersinia. Virulence 15: 2316439. 
  29. Felek S, Krukonis ES. 2009. The Yersinia pestis Ail protein mediates binding and Yop delivery to host cells required for plague virulence. Infect. Immun. 77: 825-836. 
  30. Grutzkau A, Hanski C, Hahn H, Riecken EO. 1990. Involvement of M cells in the bacterial invasion of Peyer's patches: a common mechanism shared by Yersinia enterocolitica and other enteroinvasive bacteria. Gut 31: 1011-1015. 
  31. Schmid Y, Grassl GA, Buhler OT, Skurnik M, Autenrieth IB, Bohn E. 2004. Yersinia enterocolitica adhesin A induces production of interleukin-8 in epithelial cells. Infect. Immun. 72: 6780-6789. 
  32. Tennant SM, Skinner NA, Joe A, Robins-Browne RM. 2005. Homologues of insecticidal toxin complex genes in Yersinia enterocolitica biotype 1A and their contribution to virulence. Infect. Immun. 73: 6860-6867. 
  33. Gierczynski R. 2000. Evaluation of the usefulness of selected virulence markers for identification of virulent Yersinia enterocolitica strains. II. Genotypic markers associated with the pYV plasmid. Med. Dosw Mikrobiol. 52: 35-49. 
  34. Peruzy MF, Murru N, Perugini AG, Capuano F, Delibato E, Mercogliano R, et al. 2017. Evaluation of virulence genes in Yersinia enterocolitica strains using SYBR green real-time PCR. Food Microbiol. 65: 231-235. 
  35. Platt-Samoraj A, Syczylo K, Szczerba-Turek A, Bancerz-Kisiel A, Jablonski A, Labuc S, et al. 2017. Presence of ail and ystB genes in Yersinia enterocolitica biotype 1A isolates from game animals in Poland. Vet. J. 221: 11-13. 
  36. Wannet WJ, Reessink M, Brunings HA, Maas HM. 2001. Detection of pathogenic Yersinia enterocolitica by a rapid and sensitive duplex PCR assay. J. Clin. Microbiol. 39: 4483-4486. 
  37. Hassanzadeh P, Ghasemzadeh Limoee E, Nouri Gharajalar S. 2022. Molecular detection, biotyping and serotyping of Yersinia enterocolitica isolated from chicken livers in Tabriz. Comp. Immunol. Microbiol. Infect. Dis. 83: 101777. 
  38. Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18: 821-829. 
  39. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 2068-2069. 
  40. Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, Ma N, et al. 2013. BLAST: a more efficient report with usability improvements. Nucleic Acids Res. 41(Web Server issue): W29-W33.
  41. Liu Y, Xu T, Wang Q, Huang J, Zhu Y, Liu X, et al. 2022. Vibrio cholerae senses human enteric alpha-defensin 5 through a CarSR two-component system to promote bacterial pathogenicity. Commun. Biol. 5: 559. 
  42. Wang J, Xu Y, Qin C, Hu J, Yin J, Guo X. 2021. Structural determination and genetic identification of the O-antigen from an Escherichia coli strain, LL004, representing a novel serogroup. Int. J. Mol. Sci. 22: 12746. 
  43. Xie J, Chen Y, Cai G, Cai R, Hu Z, Wang H. 2023. Tree visualization by one table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res. 51: W587-W592.
  44. Cornelis GR, Sluiters C, Delor I, Geib D, Kaniga K, Lambert de Rouvroit C, et al. 1991. ymoA, a Yersinia enterocolitica chromosomal gene modulating the expression of virulence functions. Mol. Microbiol. 5: 1023-1034. 
  45. Thomson NR, Howard S, Wren BW. 2006. The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081. PLoS Genet. 2: e206. 
  46. Young GM, Badger JL, Miller VL. 2000. Motility is required to initiate host cell invasion by Yersinia enterocolitica. Infect. Immun. 68: 4323-4326. 
  47. Brem D, Pelludat C, Rakin A, Jacobi CA, Heesemann J. 2001. Functional analysis of yersiniabactin transport genes of Yersinia enterocolitica. Microbiology (Reading) 147: 1115-1127. 
  48. Haller JC, Carlson S, Pederson KJ, Pierson DE. 2000. A chromosomally encoded type III secretion pathway in Yersinia enterocolitica is important in virulence. Mol. Microbiol. 36: 1436-1446. 
  49. Turkovicova L, Smidak R, Jung G, Turna J, Lubec G, Aradska J. 2016. Proteomic analysis of the TerC interactome: novel links to tellurite resistance and pathogenicity. J. Proteomics 136: 167-173. 
  50. Samuel G, Reeves P. 2003. Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr. Res. 338: 2503-2519. 
  51. Feng L, Senchenkova SN, Yang J, Shashkov AS, Tao J, Guo H, et al. 2004. Synthesis of the heteropolysaccharide O antigen of Escherichia coli O52 requires an ABC transporter: structural and genetic evidence. J. Bacteriol. 186: 4510-4519. 
  52. Vinogradov E, Frirdich E, MacLean LL, Perry MB, Petersen BO, Duus JO, et al. 2002. Structures of lipopolysaccharides from Klebsiella pneumoniae. Eluicidation of the structure of the linkage region between core and polysaccharide O chain and identification of the residues at the non-reducing termini of the O chains. J. Biol. Chem. 277: 25070-25081. 
  53. Whitfield C, Trent MS. 2014. Biosynthesis and export of bacterial lipopolysaccharides. Annu. Rev. Biochem. 83: 99-128. 
  54. King JD, Berry S, Clarke BR, Morris RJ, Whitfield C. 2014. Lipopolysaccharide O antigen size distribution is determined by a chain extension complex of variable stoichiometry in Escherichia coli O9a. Proc. Natl. Acad. Sci. USA 111: 6407-6412. 
  55. Kenyon JJ, Cunneen MM, Reeves PR. 2017. Genetics and evolution of Yersinia pseudotuberculosis O-specific polysaccharides: a novel pattern of O-antigen diversity. FEMS Microbiol. Rev. 41: 200-217. 
  56. Chen Y, Bystricky P, Adeyeye J, Panigrahi P, Ali A, Johnson JA, et al. 2007. The capsule polysaccharide structure and biogenesis for non-O1 Vibrio cholerae NRT36S: genes are embedded in the LPS region. BMC Microbiol. 7: 20. 
  57. Guo X, Liu B, Chen M, Wang Y, Wang L, Chen H, Wang Y, et al. 2017. Genetic and serological identification of three Vibrio parahaemolyticus strains as candidates for novel provisional O serotypes. Int. J. Food Microbiol. 245: 53-58. 
  58. Gierczynski R. 2000. Evaluation of the usefulness of selected virulence markers for identification of virulent strains of Yersinia enterocolitica strains. III. Chromosome markers of virulence. Med. Dosw Mikrobiol. 52: 51-65. 
  59. Bhagat N, Virdi JS. 2007. Distribution of virulence-associated genes in Yersinia enterocolitica biovar 1A correlates with clonal groups and not the source of isolation. FEMS Microbiol. Lett. 266: 177-183. 
  60. Hein J, Kempf VA, Diebold J, Bucheler N, Preger S, Horak I, et al. 2000. Interferon consensus sequence binding protein confers resistance against Yersinia enterocolitica. Infect. Immun. 68: 1408-1417. 
  61. Brem D, Pelludat C, Rakin A, Jacobi CA. Heesemann J. 2001. Functional analysis of yersiniabactin transport genes of Yersinia enterocolitica. Microbiology (Reading) 147: 1115-1127. 
  62. Haller JC, Carlson S, Pederson KJ, Pierson DE. 2000. A chromosomally encoded type III secretion pathway in Yersinia enterocolitica is important in virulence. Mol. Microbiol. 36: 1436-1446. 
  63. Venecia K, Young GM. 2005. Environmental regulation and virulence attributes of the Ysa type III secretion system of Yersinia enterocolitica biovar 1B. Infect. Immun. 73: 5961-5977. 
  64. Jiang L, Yang W, Jiang X, Yao T, Wang L, Yang B. 2021. Virulence-related O islands in enterohemorrhagic Escherichia coli O157:H7. Gut Microbes 13: 1992237. 
  65. Liu B, Qian C, Wu P, Li X, Liu Y, Mu H, et al. 2021. Attachment of enterohemorrhagic Escherichia coli to host cells reduces O antigen chain length at the infection site that promotes infection. mBio 12: e0269221. 
  66. Qian C, Huang M, Du Y, Song J, Mu H, Wei Y, et al. 2021. Chemotaxis and shorter O-antigen chain length contribute to the strong desiccation tolerance of a food-isolated Cronobacter sakazakii strain. Front. Microbiol. 12: 779538.