과제정보
This research described in this paper is supported by the National Natural Science Foundation of China (Grant No. 52108460).
참고문헌
- Aboshosha, H., Mara, T.G. and Izukawa, N. (2020), "Towards performance-based design under thunderstorm winds: a new method for wind speed evaluation using historical records and Monte Carlo simulations", Wind Struct., 31(2), 85-102. https://doi.org/10.12989/was.2020.31.2.085.
- Aryan, H., Boynton, R.J. and Walker, S.N. (2013), "Analysis of trends between solar wind velocity and energetic electron fluxes at geostationary orbit using the reverse arrangement test", J. Geophys. Res. Space Phys., 118(2), 636-641. https://doi.org/10.1029/2012JA018216.
- Bao, X. and Li, C. (2019), "Fast simulation of non-stationary wind velocity based on time-frequency interpolation", J. Wind Eng. Ind. Aerod., 193, 103982. https://doi.org/10.1016/j.jweia.2019.103982.
- Bao, X. and Li, C. (2020), "Application of time-frequency interpolation and proper orthogonal decomposition in nonstationary wind-field simulation", J. Eng. Mech., 146(5), 04020034. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001761.
- Bhandari, A., Datta, G. and Bhattacharjya, S. (2018), "Efficient wind fragility analysis of RC high rise building through metamodelling", Wind Struct., 27(3), 199-211. https://doi.org/10.12989/was.2018.27.3.199.
- Chen, L. and Letchford, C.W. (2006), "Multi-scale correlation analyses of two lateral profiles of full-scale downburst wind speeds", J. Wind Eng. Ind. Aerod., 94(9), 675-696. https://doi.org/10.1016/j.jweia.2006.01.021.
- Conte, J.P., Peng, B.F. (1997), "Fully nonstationary analytical earthquake ground-motion model", J. Eng. Mech., 123(1), 15-24. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:1(15).
- Cui, X.Z. and Hong, H.P. (2020), "Use of discrete orthonormal S-transform to simulate earthquake ground motions", Bull. Seismol. Soc. Am., 110(2), 565-575. https://doi.org/10.1785/0120190212.
- Feng, Y., Su, Q., Hao, J., Han, W. and Wang, H. (2023), "A comparative study on the transient wind-induced response of long-span bridges subject to downbursts and typhoons", Eng. Struct., 280, 115649. https://doi.org/10.1016/j.engstruct.2023.115649.
- Huang, G. (2015), "Application of proper orthogonal decomposition in fast Fourier transform-Assisted multivariate nonstationary process simulation", J. Eng. Mech., 147(1), 04015015. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000923.
- Hong, H.P. and Cui, X.Z. (2020), "Time-frequency spectral representation models to simulate nonstationary processes and their use to generate ground motions", J. Eng. Mech., 146(9), 04020106. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001827.
- Hong, H.P., Cui, X.Z. and Xiao, M.Y. (2021), "Modelling and simulating thunderstorm/downburst winds using S-transform and discrete orthonormal S-transform", J. Wind Eng. Ind. Aerod., 212, 104598. https://doi.org/10.1016/j.jweia.2021.104598.
- Huang, G., Chen, X., Liao, H. and Li, M. (2013), "Predicting of tall building response to non-stationary winds using multiple wind speed samples", Wind Struct., 17(2), 227-244. https://doi.org/10.12989/was.2013.17.2.227.
- Huang, G., Su, Y., Kareem, A. and Liao, H. (2016), "Time-frequency analysis of nonstationary process based on multivariate empirical mode decomposition", J. Eng. Mech., 142(1), 04015065. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000975.
- Huang, G., Peng, L., Kareem, A. and Song, C. (2020), "Data-driven simulation of multivariate nonstationary winds: A hybrid multivariate empirical mode decomposition and spectral representation method", 197, 104073. https://doi.org/10.1016/j.jweia.2019.104073.
- Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q. and Liu, H.H. (1998), "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis", Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, March.
- Huang, Y., Liu, H. and Zhou, S. (2015), "An efficient monotone projected Barzilai-Borwein method for nonnegative matrix factorization", Appl. Math. Lett., 45, 12-17. https://doi.org/10.1016/j.aml.2015.01.003.
- Huang, Y., Liu, H. and Zhou, S. (2015), "Quadratic regularization projected Barzilai-Borwein method for nonnegative matrix factorization", Data Min. Knowl. Discov., 29, 1665-1684. https://doi.org/10.1007/s10618-014-0390-x.
- Jiang, Y., Zhao, N., Peng, L., Xin, J. and Liu, S. (2022), "Fast simulation of fully non-stationary wind fields using a new matrix factorization assisted interpolation method", Mech. Syst. Signal Process., 172, 108973. https://doi.org/10.1016/j.ymssp.2022.108973.
- Kareem, A. (2008), "Numerical simulation of wind effects: A probabilistic perspective", J. Wind Eng. Ind. Aerod., 96(10-11), 1472-1497. https://doi.org/10.1016/j.jweia.2008.02.048.
- Li, C., Chen, L. and Cao, L. (2023), "High-efficiency simulation of nonstationary wind velocity using diagonal POD of decomposed time-frequency interpolation node spectrum matrices", J. Wind Eng. Ind. Aerod., 233, 105314. https://doi.org/10.1016/j.jweia.2023.105314.
- Li, C., Luo, K. and Cao, L. (2022), "Data-driven simulation of multivariate nonstationary wind velocity with explicit introduction of the time-varying coherence functions", J. Wind Eng. Ind. Aerod., 220, 104872. https://doi.org/10.1016/j.jweia.2021.104872.
- Li, Y. and Kareem, A. (1991), "Simulation of multivariate nonstationary random processes by FFT", J. Eng. Mech., 117(5), 1037-1058. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:5(1037).
- Liu, S., Peng, L., Liu, J., Zhao, S. and Jiang, Z. (2022), "Spectral representation-based efficient simulation method for fully nonstationary spatially varying ground motions", Soil Dyn. Earthq. Eng., 161, 107436. https://doi.org/10.1016/j.soildyn.2022.107436.
- Liu, Y.X. and Hong, H.P. (2023), "Data-driven approach for generating tricomponent nonstationary non-gaussian thunderstorm wind records using continuous wavelet transforms and s-transform", J. Struct. Eng., 149(12), 04023175. https://doi.org/10.1061/JSENDH.STENG-12313.
- Lombardo, F.T., Smith, D.A., Schroeder, J.L. and Mehta, K.C. (2014), "Thunderstorm characteristics of importance to wind engineering", J. Wind Eng. Ind. Aerod., 125, 121-132. https://doi.org/10.1016/j.jweia.2013.12.004.
- Peng, L., Huang, G., Kareem, A. and Li, Y. (2016), "An efficient space-time based simulation approach of wind velocity field with embedded conditional interpolation for unevenly spaced locations", Probab. Eng. Mech., 43, 156-168. https://doi.org/10.1016/j.probengmech.2015.10.006.
- Quan, Y., Fu, G.Q., Huang, Z.F. and Gu, M. (2020), "Comparative analysis of the wind characteristics of three landfall typhoons based on stationary and nonstationary wind models", Wind Struct., 31(3), 269-285. https://doi.org/10.12989/was.2020.31.3.269.
- Sterling, M., Huo, S. and Baker, C.J. (2023), "Using crop fall patterns to provide an insight into thunderstorm downbursts", J. Wind Eng. Ind. Aerod., 238, 105431. https://doi.org/10.1016/j.jweia.2023.105431.
- Stockwell, R.G. (2007), "A basis for efficient representation of the S-transform", Digit. Signal Process., 17(1), 371-393. https://doi.org/10.1016/j.dsp.2006.04.006.
- Stockwell, R.G., Mansinha, L. and Lowe, R.P. (1996), "Localization of the complex spectrum: the S transform", IEEE Trans. Signal Process., 44(4), 998-1001. https://doi.org/10.1109/78.492555.
- Su, Y., Huang, G., Liu, R. and Zeng, Y. (2021), "Efficient buffeting analysis under non-stationary winds and application to a mountain bridge", Wind Struct., 32(2), 89-104. https://doi.org/10.12989/was.2021.32.2.89.
- Tao, T., Wang, H. and Kareem, A. (2018), "Reduced-hermite bifold-interpolation assisted schemes for the simulation of random wind field", Probab. Eng. Mech., 53, 126-142. https://doi.org/10.1016/j.probengmech.2018.08.002.
- Tao, T., Wang, H., Yao, C., He, X. and Kareem, A. (2018), "Efficacy of interpolation-enhanced schemes in random wind field simulation over long-span bridges", J. Bridg. Eng., 23(3), 04017147. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001203.
- Vandanapu, L. and Shields, M.D. (2021), "3rd-order spectral representation method: Simulation of multi-dimensional random fields and ergodic multi-variate random processes with fast Fourier transform implementation", Probab. Eng. Mech., 64, 103128. https://doi.org/10.1016/j.probengmech.2021.103128.
- Wang, H. and Wu, T. (2018), "Hilbert-wavelet-based nonstationary wind field simulation: A multiscale spatial correlation scheme", J. Eng. Mech., 144(8), 04018063. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001490.
- Wang, H. and Wu, T. (2020), "Time-varying multiscale spatial correlation: Simulation and application to wind loading of structures", J. Struct. Eng., 146(7), 04020138. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002689.
- Wang, H. and Wu, T. (2021), "Fast Hilbert-wavelet simulation of nonstationary wind field using noniterative simultaneous matrix diagonalization". J. Eng. Mech., 147(3), 04020153. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001897.
- Wang, L., McCullough, M. and Kareem, A. (2013), "A data-driven approach for simulation of full-scale downburst wind speeds". J. Wind Eng. Ind. Aerod., 123, 171-190. https://doi.org/10.1016/j.jweia.2013.08.010.
- Wang, L., McCullough, M. and Kareem, A. (2014), "Modeling and simulation of nonstationary processes utilizing wavelet and Hilbert transforms", J. Eng. Mech., 140(2), 345-360. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000666.
- Wen, P., Liu, R. and Wen, R. (2023), "Wavelet packets-based simulation of non-stationary multivariate ground motions", Probab. Eng. Mech., 74, 103495. https://doi.org/10.1016/j.probengmech.2023.103495.
- Wen, Y.K. and Gu, P. (2004), "Description and simulation of nonstationary processes based on Hilbert spectra", J. Eng. Mech., 130(8), 942-951. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:8(942).
- Wu, Y. and Gao, Y. (2019), "A modified spectral representation method to simulate non-Gaussian random vector process considering wave-passage effect", Eng. Struct., 201, 109587. https://doi.org/10.1016/j.engstruct.2019.109587.
- Wu, Y., Gao, Y., Zhang, N. and Zhang, F. (2018), "Simulation of spatially varying non-Gaussian and nonstationary seismic ground motions by the spectral representation method", J. Eng. Mech., 144(1), 04017143. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001371.
- Xu, Y. L., and Chen, J. (2004), "Characterizing nonstationary wind speed using empirical mode decomposition", J. Struct. Eng., 130(6), 912-920. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:6(912).
- Yao, D., El, Damatty, A. and Ezami, N. (2023), "Response of transmission line conductors under different tornadoes", Wind Struct., 37(3), 179-189. https://doi.org/10.12989/was.2023.37.3.179.
- Zhang, Y.M., Huang, Z. and Xia, Y. (2023), "An improved multi-taper S-transform method to estimate evolutionary spectrum and time-varying coherence of nonstationary processes", Mech. Syst. Signal Process., 198, 110386. https://doi.org/10.1016/j.ymssp.2023.110386.
- Zhao, N. and Huang, G. (2017), "Fast simulation of multivariate nonstationary process and its application to extreme winds", J. Wind Eng. Ind. Aerod., 170, 118-127. https://doi.org/10.1016/j.jweia.2017.08.008.
- Zhao, N., Jiang, Y., Peng, L. and Chen, X. (2021), "Fast simulation of nonstationary wind velocity fields by proper orthogonal decomposition interpolation", J. Wind Eng. Ind. Aerod., 219, 104798. https://doi.org/10.1016/j.jweia.2021.104798.
- Zhong, Y., Liu, Y., Zhang, H., Yan, Z., Liu, X., Luo, J. and Li, F. (2024), "Numerical simulation and experimental study of nonstationary downburst outflow based on wall jet model", Wind Struct., 38(2), 129-146. https://doi.org/10.12989/was.2024.38.2.129.