DOI QR코드

DOI QR Code

Enhanced data-driven simulation of non-stationary winds using DPOD based coherence matrix decomposition

  • Liyuan Cao (Department of Civil Engineering, School of Mechanics and Engineering Science, Shanghai University) ;
  • Jiahao Lu (Department of Civil Engineering, School of Mechanics and Engineering Science, Shanghai University) ;
  • Chunxiang Li (Department of Civil Engineering, School of Mechanics and Engineering Science, Shanghai University)
  • Received : 2024.01.23
  • Accepted : 2024.07.14
  • Published : 2024.08.25

Abstract

The simulation of non-stationary wind velocity is particularly crucial for the wind resistant design of slender structures. Recently, some data-driven simulation methods have received much attention due to their straightforwardness. However, as the number of simulation points increases, it will face efficiency issues. Under such a background, in this paper, a time-varying coherence matrix decomposition method based on Diagonal Proper Orthogonal Decomposition (DPOD) interpolation is proposed for the data-driven simulation of non-stationary wind velocity based on S-transform (ST). Its core idea is to use coherence matrix decomposition instead of the decomposition of the measured time-frequency power spectrum matrix based on ST. The decomposition result of the time-varying coherence matrix is relatively smooth, so DPOD interpolation can be introduced to accelerate its decomposition, and the DPOD interpolation technology is extended to the simulation based on measured wind velocity. The numerical experiment has shown that the reconstruction results of coherence matrix interpolation are consistent with the target values, and the interpolation calculation efficiency is higher than that of the coherence matrix time-frequency interpolation method and the coherence matrix POD interpolation method. Compared to existing data-driven simulation methods, it addresses the efficiency issue in simulations where the number of Cholesky decompositions increases with the increase of simulation points, significantly enhancing the efficiency of simulating multivariate non-stationary wind velocities. Meanwhile, the simulation data preserved the time-frequency characteristics of the measured wind velocity well.

Keywords

Acknowledgement

This research described in this paper is supported by the National Natural Science Foundation of China (Grant No. 52108460).

References

  1. Aboshosha, H., Mara, T.G. and Izukawa, N. (2020), "Towards performance-based design under thunderstorm winds: a new method for wind speed evaluation using historical records and Monte Carlo simulations", Wind Struct., 31(2), 85-102. https://doi.org/10.12989/was.2020.31.2.085.
  2. Aryan, H., Boynton, R.J. and Walker, S.N. (2013), "Analysis of trends between solar wind velocity and energetic electron fluxes at geostationary orbit using the reverse arrangement test", J. Geophys. Res. Space Phys., 118(2), 636-641. https://doi.org/10.1029/2012JA018216.
  3. Bao, X. and Li, C. (2019), "Fast simulation of non-stationary wind velocity based on time-frequency interpolation", J. Wind Eng. Ind. Aerod., 193, 103982. https://doi.org/10.1016/j.jweia.2019.103982.
  4. Bao, X. and Li, C. (2020), "Application of time-frequency interpolation and proper orthogonal decomposition in nonstationary wind-field simulation", J. Eng. Mech., 146(5), 04020034. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001761.
  5. Bhandari, A., Datta, G. and Bhattacharjya, S. (2018), "Efficient wind fragility analysis of RC high rise building through metamodelling", Wind Struct., 27(3), 199-211. https://doi.org/10.12989/was.2018.27.3.199.
  6. Chen, L. and Letchford, C.W. (2006), "Multi-scale correlation analyses of two lateral profiles of full-scale downburst wind speeds", J. Wind Eng. Ind. Aerod., 94(9), 675-696. https://doi.org/10.1016/j.jweia.2006.01.021.
  7. Conte, J.P., Peng, B.F. (1997), "Fully nonstationary analytical earthquake ground-motion model", J. Eng. Mech., 123(1), 15-24. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:1(15).
  8. Cui, X.Z. and Hong, H.P. (2020), "Use of discrete orthonormal S-transform to simulate earthquake ground motions", Bull. Seismol. Soc. Am., 110(2), 565-575. https://doi.org/10.1785/0120190212.
  9. Feng, Y., Su, Q., Hao, J., Han, W. and Wang, H. (2023), "A comparative study on the transient wind-induced response of long-span bridges subject to downbursts and typhoons", Eng. Struct., 280, 115649. https://doi.org/10.1016/j.engstruct.2023.115649.
  10. Huang, G. (2015), "Application of proper orthogonal decomposition in fast Fourier transform-Assisted multivariate nonstationary process simulation", J. Eng. Mech., 147(1), 04015015. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000923.
  11. Hong, H.P. and Cui, X.Z. (2020), "Time-frequency spectral representation models to simulate nonstationary processes and their use to generate ground motions", J. Eng. Mech., 146(9), 04020106. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001827.
  12. Hong, H.P., Cui, X.Z. and Xiao, M.Y. (2021), "Modelling and simulating thunderstorm/downburst winds using S-transform and discrete orthonormal S-transform", J. Wind Eng. Ind. Aerod., 212, 104598. https://doi.org/10.1016/j.jweia.2021.104598.
  13. Huang, G., Chen, X., Liao, H. and Li, M. (2013), "Predicting of tall building response to non-stationary winds using multiple wind speed samples", Wind Struct., 17(2), 227-244. https://doi.org/10.12989/was.2013.17.2.227.
  14. Huang, G., Su, Y., Kareem, A. and Liao, H. (2016), "Time-frequency analysis of nonstationary process based on multivariate empirical mode decomposition", J. Eng. Mech., 142(1), 04015065. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000975.
  15. Huang, G., Peng, L., Kareem, A. and Song, C. (2020), "Data-driven simulation of multivariate nonstationary winds: A hybrid multivariate empirical mode decomposition and spectral representation method", 197, 104073. https://doi.org/10.1016/j.jweia.2019.104073.
  16. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q. and Liu, H.H. (1998), "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis", Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, March.
  17. Huang, Y., Liu, H. and Zhou, S. (2015), "An efficient monotone projected Barzilai-Borwein method for nonnegative matrix factorization", Appl. Math. Lett., 45, 12-17. https://doi.org/10.1016/j.aml.2015.01.003.
  18. Huang, Y., Liu, H. and Zhou, S. (2015), "Quadratic regularization projected Barzilai-Borwein method for nonnegative matrix factorization", Data Min. Knowl. Discov., 29, 1665-1684. https://doi.org/10.1007/s10618-014-0390-x.
  19. Jiang, Y., Zhao, N., Peng, L., Xin, J. and Liu, S. (2022), "Fast simulation of fully non-stationary wind fields using a new matrix factorization assisted interpolation method", Mech. Syst. Signal Process., 172, 108973. https://doi.org/10.1016/j.ymssp.2022.108973.
  20. Kareem, A. (2008), "Numerical simulation of wind effects: A probabilistic perspective", J. Wind Eng. Ind. Aerod., 96(10-11), 1472-1497. https://doi.org/10.1016/j.jweia.2008.02.048.
  21. Li, C., Chen, L. and Cao, L. (2023), "High-efficiency simulation of nonstationary wind velocity using diagonal POD of decomposed time-frequency interpolation node spectrum matrices", J. Wind Eng. Ind. Aerod., 233, 105314. https://doi.org/10.1016/j.jweia.2023.105314.
  22. Li, C., Luo, K. and Cao, L. (2022), "Data-driven simulation of multivariate nonstationary wind velocity with explicit introduction of the time-varying coherence functions", J. Wind Eng. Ind. Aerod., 220, 104872. https://doi.org/10.1016/j.jweia.2021.104872.
  23. Li, Y. and Kareem, A. (1991), "Simulation of multivariate nonstationary random processes by FFT", J. Eng. Mech., 117(5), 1037-1058. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:5(1037).
  24. Liu, S., Peng, L., Liu, J., Zhao, S. and Jiang, Z. (2022), "Spectral representation-based efficient simulation method for fully nonstationary spatially varying ground motions", Soil Dyn. Earthq. Eng., 161, 107436. https://doi.org/10.1016/j.soildyn.2022.107436.
  25. Liu, Y.X. and Hong, H.P. (2023), "Data-driven approach for generating tricomponent nonstationary non-gaussian thunderstorm wind records using continuous wavelet transforms and s-transform", J. Struct. Eng., 149(12), 04023175. https://doi.org/10.1061/JSENDH.STENG-12313.
  26. Lombardo, F.T., Smith, D.A., Schroeder, J.L. and Mehta, K.C. (2014), "Thunderstorm characteristics of importance to wind engineering", J. Wind Eng. Ind. Aerod., 125, 121-132. https://doi.org/10.1016/j.jweia.2013.12.004.
  27. Peng, L., Huang, G., Kareem, A. and Li, Y. (2016), "An efficient space-time based simulation approach of wind velocity field with embedded conditional interpolation for unevenly spaced locations", Probab. Eng. Mech., 43, 156-168. https://doi.org/10.1016/j.probengmech.2015.10.006.
  28. Quan, Y., Fu, G.Q., Huang, Z.F. and Gu, M. (2020), "Comparative analysis of the wind characteristics of three landfall typhoons based on stationary and nonstationary wind models", Wind Struct., 31(3), 269-285. https://doi.org/10.12989/was.2020.31.3.269.
  29. Sterling, M., Huo, S. and Baker, C.J. (2023), "Using crop fall patterns to provide an insight into thunderstorm downbursts", J. Wind Eng. Ind. Aerod., 238, 105431. https://doi.org/10.1016/j.jweia.2023.105431.
  30. Stockwell, R.G. (2007), "A basis for efficient representation of the S-transform", Digit. Signal Process., 17(1), 371-393. https://doi.org/10.1016/j.dsp.2006.04.006.
  31. Stockwell, R.G., Mansinha, L. and Lowe, R.P. (1996), "Localization of the complex spectrum: the S transform", IEEE Trans. Signal Process., 44(4), 998-1001. https://doi.org/10.1109/78.492555.
  32. Su, Y., Huang, G., Liu, R. and Zeng, Y. (2021), "Efficient buffeting analysis under non-stationary winds and application to a mountain bridge", Wind Struct., 32(2), 89-104. https://doi.org/10.12989/was.2021.32.2.89.
  33. Tao, T., Wang, H. and Kareem, A. (2018), "Reduced-hermite bifold-interpolation assisted schemes for the simulation of random wind field", Probab. Eng. Mech., 53, 126-142. https://doi.org/10.1016/j.probengmech.2018.08.002.
  34. Tao, T., Wang, H., Yao, C., He, X. and Kareem, A. (2018), "Efficacy of interpolation-enhanced schemes in random wind field simulation over long-span bridges", J. Bridg. Eng., 23(3), 04017147. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001203.
  35. Vandanapu, L. and Shields, M.D. (2021), "3rd-order spectral representation method: Simulation of multi-dimensional random fields and ergodic multi-variate random processes with fast Fourier transform implementation", Probab. Eng. Mech., 64, 103128. https://doi.org/10.1016/j.probengmech.2021.103128.
  36. Wang, H. and Wu, T. (2018), "Hilbert-wavelet-based nonstationary wind field simulation: A multiscale spatial correlation scheme", J. Eng. Mech., 144(8), 04018063. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001490.
  37. Wang, H. and Wu, T. (2020), "Time-varying multiscale spatial correlation: Simulation and application to wind loading of structures", J. Struct. Eng., 146(7), 04020138. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002689.
  38. Wang, H. and Wu, T. (2021), "Fast Hilbert-wavelet simulation of nonstationary wind field using noniterative simultaneous matrix diagonalization". J. Eng. Mech., 147(3), 04020153. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001897.
  39. Wang, L., McCullough, M. and Kareem, A. (2013), "A data-driven approach for simulation of full-scale downburst wind speeds". J. Wind Eng. Ind. Aerod., 123, 171-190. https://doi.org/10.1016/j.jweia.2013.08.010.
  40. Wang, L., McCullough, M. and Kareem, A. (2014), "Modeling and simulation of nonstationary processes utilizing wavelet and Hilbert transforms", J. Eng. Mech., 140(2), 345-360. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000666.
  41. Wen, P., Liu, R. and Wen, R. (2023), "Wavelet packets-based simulation of non-stationary multivariate ground motions", Probab. Eng. Mech., 74, 103495. https://doi.org/10.1016/j.probengmech.2023.103495.
  42. Wen, Y.K. and Gu, P. (2004), "Description and simulation of nonstationary processes based on Hilbert spectra", J. Eng. Mech., 130(8), 942-951. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:8(942).
  43. Wu, Y. and Gao, Y. (2019), "A modified spectral representation method to simulate non-Gaussian random vector process considering wave-passage effect", Eng. Struct., 201, 109587. https://doi.org/10.1016/j.engstruct.2019.109587.
  44. Wu, Y., Gao, Y., Zhang, N. and Zhang, F. (2018), "Simulation of spatially varying non-Gaussian and nonstationary seismic ground motions by the spectral representation method", J. Eng. Mech., 144(1), 04017143. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001371.
  45. Xu, Y. L., and Chen, J. (2004), "Characterizing nonstationary wind speed using empirical mode decomposition", J. Struct. Eng., 130(6), 912-920. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:6(912).
  46. Yao, D., El, Damatty, A. and Ezami, N. (2023), "Response of transmission line conductors under different tornadoes", Wind Struct., 37(3), 179-189. https://doi.org/10.12989/was.2023.37.3.179.
  47. Zhang, Y.M., Huang, Z. and Xia, Y. (2023), "An improved multi-taper S-transform method to estimate evolutionary spectrum and time-varying coherence of nonstationary processes", Mech. Syst. Signal Process., 198, 110386. https://doi.org/10.1016/j.ymssp.2023.110386.
  48. Zhao, N. and Huang, G. (2017), "Fast simulation of multivariate nonstationary process and its application to extreme winds", J. Wind Eng. Ind. Aerod., 170, 118-127. https://doi.org/10.1016/j.jweia.2017.08.008.
  49. Zhao, N., Jiang, Y., Peng, L. and Chen, X. (2021), "Fast simulation of nonstationary wind velocity fields by proper orthogonal decomposition interpolation", J. Wind Eng. Ind. Aerod., 219, 104798. https://doi.org/10.1016/j.jweia.2021.104798.
  50. Zhong, Y., Liu, Y., Zhang, H., Yan, Z., Liu, X., Luo, J. and Li, F. (2024), "Numerical simulation and experimental study of nonstationary downburst outflow based on wall jet model", Wind Struct., 38(2), 129-146. https://doi.org/10.12989/was.2024.38.2.129.