DOI QR코드

DOI QR Code

Wind turbulence characteristics over an industrial landscape in neutral atmospheric conditions

  • Petr Michalek (Institute of Theoretical and Applied Mechanics, The Czech Academy of Sciences) ;
  • Stanislav Pospisil (Institute of Theoretical and Applied Mechanics, The Czech Academy of Sciences) ;
  • Pavel Sedlak (Institute of Atmospheric Physics, The Czech Academy of Sciences)
  • Received : 2023.12.13
  • Accepted : 2024.04.28
  • Published : 2024.08.25

Abstract

The atmospheric turbulence characteristics measured at a meteorological station in northwest part of the Czech Republic are presented for selected time periods in the year 2017. The terrain of this region is influenced by surface coal mining and the related industry. The datasets used in this study were measured using four ultrasonic anemometers installed on an 80 m high meteorological mast at heights of 20, 40, 60 and 80 m, respective. From the primary high-frequency datasets, time intervals in order of hours were selected and integral turbulence characteristics (ITCs), turbulence intensities and turbulence spectra were analyzed. The time intervals were selected with respect to atmospheric stability parameter, known as Obukhov number. We concentrated on the days with higher wind velocity and neutral atmospheric stratification. The wind characteristics investigated in this study include the wind speed, wind direction and its histograms, turbulence intensity, friction velocity and wind power spectra. The ITCs and spectral characteristics were compared with the theoretical models and values from the literature. The resulting ITCs showed the values for urban locations similar to those found in other studies and can be used in practical design. The computed turbulence spectra followed the shape of theoretical spectra of turbulence for both horizontal and vertical velocity components. The computed integral length scales have shown to be unsuitable for further use due to their highly scattered values.

Keywords

Acknowledgement

This work was supported by the Strategy AV21 project "City as Lab of Changes", financed by the Czech Academy of Sciences. The authors thank Petr Pesice from IAP CAS for the data processing by the TK3 tool.

References

  1. Arya, S.P. (2001), Introduction to Micrometeorology, Academic Press, San Diego, California, USA
  2. Chen, Q., Yu, C., Li, Y., Zhang, X. and He, P. (2022), "Directional wind characteristics analysis in the mountainous area based on field measurement", J. Wind Eng. Ind. Aerod., 229, 105162, https://doi.org/10.1016/j.jweia.2022.105162.
  3. Cheynet, E. (2023a), "Friction velocity estimation from the Reynolds stress tensor", GitHub, URL https://github.com/ECheynet/Klipp2018/releases/tag/v1.4, retrieved February 6, 2023.
  4. Cheynet, E. (2023b), "Wind turbulence in the neutral and unstable surface-layer", GitHub. Retrieved June 8, 2023, URL https://github.com/ECheynet/virtualMast_unstable/releases/tag/v1.5.
  5. Emes, M.J., Jafari, A. and Arjomandi, M. (2018), "Estimating the turbulence length scales from cross-correlation measurements in the atmospheric surface layer", Proceedings of the 21st Australasian Fluid Mechanics Conference (AFMC2018), Adelaide, December.
  6. ESDU 85020 (2001), Characteristics of atmospheric turbulence near the ground, Part II: singlepoint data for strong winds (neutral atmosphere), Engineering Sciences Data Unit
  7. Fesquet, C., Drobinski, P., Bartlett, C.H. and Dubos, T. (2009), "Impact of terrain heterogeneity on near-surface turbulence structure", Atmosp. Res. 94(2009) 254-269 https://doi.org/10.1016/j.atmosres.2009.06.003
  8. Foken, T. (2017), Micrometeorology, Springer Berlin Heidelberg, Germany.
  9. Fortuniak, K. and Pawlak, W. (2014), "Selected spectral characteristics of turbulence over an urbanized area in the centre of Lodz, Poland", Bound. Layer Meteor., 154(1), 137-156. https://doi.org/10.1007/s10546-014-9966-7.
  10. Fortuniak, K., Pawlak, W. and Siedlecki, M. (2012), "Integral turbulence statistics over a central European city centre", Bound. Layer Meteor., 146(2), 257-276. https://doi.org/10.1007/s10546-012-9762-1.
  11. Funk, R., Papke, N. and Hor, B. (2019), "Wind tunnel tests to estimate PM10 and PM2.5-emissions from complex substrates of open-cast strip mines in Germany", Aeolian Res., 39, 23-32. https://doi.org/10.1016/j.aeolia.2019.03.003.
  12. He, J., He, Y., Li, Q., Chan, P., Zhang, L., Yang, H. and Li, L. (2020), "Observational study of wind characteristics, wind speed and turbulence profiles during Super Typhoon Mangkhut", J. Wind Eng. Ind. Aerod., 206, 104362. https://doi.org/10.1016/j.jweia.2020.104362.
  13. Hounsinou, M., Mamadou, O., Wudba, M., Kounouhewa, B. and Cohard, J.M. (2022), "Integral turbulence characteristics over a clear woodland forest in northern Benin (West Africa)", Atmosp. Res., 268, 105985. https://doi.org/10.1016/j.atmosres.2021.105985.
  14. Hui, M., Larsen, A. and Xiang, H. (2009a), "Wind turbulence characteristics study at the Stonecutters Bridge site: Part I: Mean wind and turbulence intensities", J. Wind Eng. Ind. Aerod., 97(1), 22-36. https://doi.org/10.1016/j.jweia.2008.11.002.
  15. Hui, M., Larsen, A. and Xiang, H. (2009b), "Wind turbulence characteristics study at the Stonecutters Bridge site: Part II: Wind power spectra, integral length scales and coherences", J. Wind Eng. Ind. Aerod., 97(1), 48-59. https://doi.org/10.1016/j.jweia.2008.11.003.
  16. IAP (2023), Institute of Atmospheric Physics, CAS, Prague, Czech Republic. https://www.ufa.cas.cz/struktura-ustavu/oddeleni-meteorologie/observatore/kopisty-uvod/.
  17. Jing, H., Liao, H., Ma, C., Tao, Q. and Jiang, J. (2020), "Field measurement study of wind characteristics at different measuring positions in a mountainous valley", Exp. Therm. Fluid Sci., 112, 109991. https://doi.org/10.1016/j.expthermflusci.2019.109991.
  18. Kaimal, J. and Finnigan, J.J. (1994), Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press. Oxford, UK
  19. Kljun, N., Calanca, P., Rotach, M.W., Schmidt, H.P. (2015), "A simple two-dimensional parametrisation for Flux Footprint Prediction (FFP)", Geosci. Model Dev., 8, 3695-3713. https://doi.org/10.5194/gmd-8-3695-2015
  20. Kopisty (2023), "Meteorological observatory Kopisty", Institute Atmos. Phys., CAS, Prague, Czech Republic. https://www.ufa.cas.cz/en/institute-structure/department-of-meteorology/observatories/kopisty-weather-station/measurements/.
  21. Letson, F., Barthelmie, R.J., Hu, W. and Pryor, S.C. (2019), "Characterizing wind gusts in complex terrain", Atm. Chem. Phys., 19(6), 3797-3819. https://doi.org/10.5194/acp-19-3797-2019.
  22. Masseroni, D., Ravazzani, G., Corbari, C. and Mancini, M. (2012), "Turbulence integral length and footprint dimension with reference to experimental data measured over maize cultivation in Po Valley, Italy", Atmosfera, 25(2), 183-198.
  23. Mauder, M. and Foken, T. (2015), Documentation and Instruction Manual of the Eddy-Covariance Software Package TK3 (update), Technical report Nr. 46, Universitat Bayreuth, Bayreuth, Germany.
  24. Mauder, M., Cuntz, M., Drue, C., Graf, A., Rebmann, C., Schmid, H.P., Schmidt, M. and Steinbrecher, R. (2013), "A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements", Agricult. Forest Meteor., 169,122-135. http://dx.doi.org/10.1016/j.agrformet.2012.09.006.
  25. Midjiyawa, Z., Cheynet, E., Reuder, J., Agustsson, H. and Kvamsdal, T. (2021), "Potential and challenges of wind measurements using met-masts in complex topography for bridge design: Part I - Integral flow characteristics", J. Wind Eng. Ind. Aerod., 211, 104584. https://doi.org/10.1016/j.jweia.2021.104584.
  26. Nosek, S., Fuka, V., Kukacka, L. and Janour, Z. (2014), "Atmospheric dispersion modelling over coal mine excavation - on LES validation by wind tunnel experiment", The 6th International Symposium on Computational Wind Engineering, https://doi.org/10.13140/2.1.2546.5285.
  27. Panofsky, H. and Dutton, J. (1984), Atmospheric Turbulence. Models and Methods for Engineering Applications, Wiley, New York, USA.
  28. Salim, S.N., Menon, H.B., Kumar, N.V.P.K. and Rajeev, K. (2023), "Study of micrometeorological characteristics of the atmospheric surface layer over a tropical coastal station in Goa", Meteor. Atm. Phys., 135(1). https://doi.org/10.1007/s00703-022-00940-3.
  29. Stull, R. (1988), An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishing. Dordrecht, Nederland