DOI QR코드

DOI QR Code

Aerodynamic optimization of twisted tall buildings

  • Magdy Alanani (Department of Civil Engineering, Lakehead University) ;
  • Ahmed Elshaer (Department of Civil Engineering, Lakehead University) ;
  • Girma Bitsuamlak (Department of Civil and Environmental Engineering, Western University)
  • Received : 2023.11.16
  • Accepted : 2024.06.11
  • Published : 2024.08.25

Abstract

Tall buildings are distinguished by their slenderness, making them sensitive to wind loads. A huge amount of resources is typically dedicated to controlling loads and vibrations caused by wind. Enhancing tall buildings' aerodynamic performance can save a large portion of these expenses. This enhancement can be achieved through aerodynamic optimization that can be tackled either by altering the outer shape of the building locally through modifying the corners (e.g., corner chamfering) or globally through changing the whole form of the building (e.g., twisting). In this paper, a newly developed aerodynamic optimization procedure (AOP) is adopted to enhance tall buildings' aerodynamic performance. This procedure is a combination of computational fluid dynamics (CFD), Artificial Neural Networks (ANN) and Genetic algorithm (GA). An ANN-based surrogate model is used to evaluate the aerodynamic parameters through the optimization procedure to reach a reliable aerodynamic shape. Helical twisting and corner modifications of the buildings are used to reduce the along-wind base moment.

Keywords

Acknowledgement

The authors would like to acknowledge the financial support from National Science and Engineering Research Center (NSERC). The authors are grateful to SHARCNET and SCINET for access to high performance computing and for the support received from their excellent technical staff.

References

  1. Alanani, M., Brown, T. and Elshaer, A. (2024), "Multiobjective structural layout optimization of tall buildings subjected to dynamic wind loads", J. Struct. Eng., 150(7). https://doi.org/10.1061/JSENDH.STENG-12366.
  2. Alanani, M. and Elshaer, A. (2023), "ANN-based optimization framework for the design of wind load resisting system of tall buildings", Eng. Struct., 285, 116032. https://doi.org/10.1016/j.engstruct.2023.116032.
  3. Bernardini, E., Spence, S.M.J., Wei, D. and Kareem, A. (2015), "Aerodynamic shape optimization of civil structures: A CFD-enabled Kriging-based approach", J. Wind Eng. Ind. Aerod., 144, 154-164. https://doi.org/10.1016/j.jweia.2015.03.011.
  4. Carassale, L., Freda, A. and Marre-Brunenghi, M. (2014), "Experimental investigation on the aerodynamic behavior of square cylinders with rounded corners", J. Fluids Struct., 44, 195-204. https://doi.org/10.1016/j.jfluidstructs.2013.10.010.
  5. Cid, Montoya, M., Hernandez, S. and Nieto, F. (2018), "Shape optimization of streamlined decks of cable-stayed bridges considering aeroelastic and structural constraints", J. Wind Eng. Ind. Aerod., 177, 429-455. https://doi.org/10.1016/j.jweia.2017.12.018.
  6. Dagnew, A.K. and Bitsuamlak, G.T. (2013), "Computational evaluation of wind loads on buildings: A review", Wind Struct, Int. J., 16(6), 629-660. https://doi.org/10.12989/was.2013.16.6.629.
  7. Ding, F., Kareem, A. and Wan, J. (2019), "Aerodynamic tailoring of structures using computational fluid dynamics", Struct. Eng. Int., 29(1), 26-39. https://doi.org/10.1080/10168664.2018.1522936.
  8. Elshaer, A. and Bitsuamlak, G. (2018), "Multiobjective aerodynamic optimization of tall building openings for wind-induced load reduction", J. Struct. Eng., 144(10), 4018198. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002199.
  9. Elshaer, A., Bitsuamlak, G. and El-Damatty, A. (2014), Wind Load Reductions due to Building Corner Modifications, 22nd Annual Conference of the CFD Society of Canada.
  10. Elshaer, A., Bitsuamlak, G., El-Damatty, A., El Damatty, A. and El-Damatty, A. (2016), Aerodynamic Shape Optimization of Tall Buildings Using Twisting and Corner Modifications, 8th International Colloquium on Bluff Body Aerodynamics and Applications.
  11. Elshaer, A., Bitsuamlak, G., El-Dammatty, A., El-Damatty, A., El Damatty, A., El-Dammatty, A., El-Damatty, A. and El Damatty, A. (2015), Vibration control of tall buildings using aerodynamic optimization. 25th Canadian Congress of Applied Mechanics. https://doi.org/RG.2.1.1703.3120
  12. Elshaer, A., Bitsuamlak, G. and El Damatty, A. (2017), "Enhancing wind performance of tall buildings using corner aerodynamic optimization", Eng. Struct,, 136, 133-148. https://doi.org/10.1016/j.engstruct.2017.01.019.
  13. Elshaer, A., Bitsuamlak, G., El Damatty, A., El-Damatty, A., El Damatty, A. and El-Damatty, A. (2015), "Aerodynamic shape optimization for corners of tall buildings using CFD", The 14th International Conference on Wind Engineering. https://www.researchgate.net/publication/277720644_Aerodynamic_shape_optimization_for_corners_of_tall_buildings_using_CFD
  14. ESDU (2001), Engineering Sciences Data Unit. Characteristics of atmospheric turbulence near the ground. Part II: single point data for strong winds.
  15. Franke, J. (2006), "Recommendations of the COST action C14 on the use of CFD in predicting pedestrian wind environment", The Fourth International Symposium on Computational Wind Engineering (CWE2006), 108, 529-532.
  16. Germano, M., Piomelli, U., Moin, P. and Cabot, W.H. (1991), "A dynamic subgrid-scale eddy viscosity model", Phys. Fluids A, 3(7), 1760-1765. https://doi.org/10.1063/1.857955.
  17. Goldberg, D. (1989), "Genetic algorithms in search", Optimiz. Machine Learning, In Wesly.
  18. Jafari, M. and Alipour, A. (2021), "Methodologies to mitigate wind-induced vibration of tall buildings: A state-of-the-art review", J. Build. Eng., 33(June 2020), 101582. https://doi.org/10.1016/j.jobe.2020.101582.
  19. Jakica, N. and Kragh, M.K. (2020), "Assessing self-shading benefits of twisting towers", J. Facade Des. Eng., 8(1), 115-130. https://doi.org/10.7480/jfde.2020.1.5043.
  20. Jaouadi, Z., Abbas, T., Morgenthal, G. and Lahmer, T. (2020), "Single and multi-objective shape optimization of streamlined bridge decks", Struct. Multidiscipl. Optimi., 61(4), 1495-1514. https://doi.org/10.1007/s00158-019-02431-3.
  21. Kareem, A., Kijewski, T. and Tamura, Y. (1999), "Mitigation of motions of tall buildings with specific examples of recent applications", Wind Struct., 2(3), 201-251. https://doi.org/10.12989/was.1999.2.3.201.
  22. Kareem, A., Spence, S., Bernardini, E., Bobby, S. and Wei, D. (2013a), "Using computational fluid dynamics to optimize tall building design", Int. J. Tall Build. Urban Habitat, CTBUH Journal 2013 Issue III.
  23. Kareem, A., Spence, S.S.S., Bernardini, E., Bobby, S. and Wei, D. (2013b), "Using computational fluid dynamics to optimize tall building design", Int. J. Tall Build. Urban Habitat, CTBUH Journal 2013 Issue III.
  24. Kawai, H. (1998), "Effect of corner modifications on aeroelastic instabilities of tall buildings", J. Wind Eng. Ind. Aerod., 74-76, 719-729. https://doi.org/10.1016/S0167-6105(98)00065-8.
  25. Kutuk, M.A. and Gov, I. (2014), "Optimum bracing design under wind load by using topology optimization", Wind Struct., 18(5), 497-510. https://doi.org/10.12989/was.2014.18.5.497.
  26. Kwok, K.C.S. (1988), "Effect of building shape on wind-induced response of tall building", J. Wind Eng. Ind. Aerod., 28(1-3), 381-390. https://doi.org/10.1016/0167-6105(88)90134-1.
  27. Michalewicz, Z. and Fogel, D.B. (2013), How to Solve It: Modern Heuristics. Springer Science & Business Media.
  28. Murakami, S. (1998), "Overview of turbulence models applied in CWE-1997", J. Wind Eng. Ind. Aerod., 74-76, 1-24. https://doi.org/10.1016/S0167-6105(98)00004-X.
  29. Nejat, A., Mirzabeygi, P. and Shariat Panahi, M. (2014), "Airfoil shape optimization using improved Multiobjective Territorial Particle Swarm algorithm with the objective of improving stall characteristics", Struct. Multidiscipl. Optimiz., 49(6), 953-967. https://doi.org/10.1007/s00158-013-1025-3.
  30. Noormohamadian, M. and Salajegheh, E. (2021), "Evaluation and minimization of moment coefficient of tall buildings with trilateral cross-section via a surrogate model", SN Appl. Sci., 3(2). https://doi.org/10.1007/s42452-020-04128-5.
  31. Nouri, F. and Ashtari, P. (2015), "Weight and topology optimization of outrigger-braced tall steel structures subjected to the wind loading using GA", Wind Struct., 20(4), 489-508. https://doi.org/10.12989/was.2015.20.4.489.
  32. Protas, B. and Wesfreid, J.E. (2002), "Drag force in the open-loop control of the cylinder wake in the laminar regime", Phys. Fluids, 14(2), 810-826. https://doi.org/10.1063/1.1432695.
  33. Qiu, Y., San, B., He, H. and Zhao, Y. (2021), "Surrogate-based aerodynamic optimization for enhancing the shelter effect of porous fences on a triangular prism", Atmos. Environ., 244(September 2020). https://doi.org/10.1016/j.atmosenv.2020.117922.
  34. SMAGORINSKY, J. (1963), "General circulation experiments with the promitive equations", Month. Weather Rev., 91(3), 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.
  35. Tamura, T. and Miyagi, T. (1999), "The effect of turbulence on aerodynamic forces on a square cylinder with various corner shapes", J. Wind Eng. Ind. Aerod., 83(1-3), 135-145. https://doi.org/10.1016/S0167-6105(99)00067-7.
  36. Tamura, T., Miyagi, T. and Kitagishi, T. (1998), "Numerical prediction of unsteady pressures on a square cylinder with various corner shapes", J. Wind Eng. Ind. Aerod., 531-542. https://doi.org/10.1016/S0167-6105(98)00048-8.
  37. Tamura, Y. and Kareem, A. (2013), "Advanced structural wind engineering", Adv. Struct. Wind Eng., https://doi.org/10.1007/978-4-431-54337-4
  38. Tanaka, H., Tamura, Y., Ohtake, K., Nakai, M., Chul Kim, Y., Chul, Y. and Chul Kim, Y. (2012), "Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations", J. Wind Eng. Ind. Aerod., 107-108, 179-191. https://doi.org/10.1016/j.jweia.2012.04.014.
  39. Tang, J., Xie, Y.M. and Felicetti, P. (2014), "Conceptual design of buildings subjected to wind load by using topology optimization", Wind Struct., 18(1), 21-35. https://doi.org/10.12989/was.2014.18.1.021.
  40. Tian, X. and Li, J. (2020), "Robust aerodynamic shape optimization using a novel multi-objective evolutionary algorithm coupled with surrogate model", Struct. Multidiscipl. Optimiz., 62(4), 1969-1987. https://doi.org/10.1007/s00158-020-02589-1.
  41. Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M. and Shirasawa, T. (2008), "AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings", J. Wind Eng. Ind. Aerod., 96(10), 1749-1761. https://doi.org/10.1016/j.jweia.2008.02.058.
  42. Vollers, K.J. (2001), Twist & Build: Creating Non-Orthogonal Architecture. 101 publishers. https://www.google.ca/books/edition/Twist_Build/nLBAB01NjmwC?hl=en&gbpv=0.
  43. Xu, A. and Zhao, R.H. (2020), "Wind-resistant structural optimization of a supertall building with complex structural system", Struct. Multidiscipl. Optimiz., 62(6), 3493-3506. https://doi.org/10.1007/s00158-020-02652-x.
  44. Zhou, Y., Kijewski, T. and Kareem, A. (2003), "Aerodynamic loads on tall buildings: Interactive database", J. Struct. Eng., 129(3), 394-404. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:3(394).