DOI QR코드

DOI QR Code

Influence of viscosity and locality on a fiber-reinforced thermoelastic solid with two different theories

  • Samia M. Said (Department of Mathematics, Faculty of Science, Zagazig University) ;
  • Mohamed I.A. Othman (Department of Mathematics, Faculty of Science, Zagazig University) ;
  • Esraa M. Gamal (Department of Mathematics, Faculty of Science, Zagazig University)
  • 투고 : 2023.04.02
  • 심사 : 2024.01.11
  • 발행 : 2024.08.25

초록

The current study attempts to discuss the effects of viscosity and locality on a fiber-reinforced thermoelastic solid. The problem is solved analytically in the context of the three-phase-lag model as well as the Green-Naghdi theory without energy dissipation (G-N II). The method of normal mode analysis is used to obtain analytical expressions for the displacement, stress, and temperature distributions. Compute the physical fields with suitable boundary conditions and perform numerical calculations using MATLAB programming. Comparisons are carried out with the results in the absence and presence of locality as well as viscosity. The locality and viscosity have great effects on all considered physical fields since the amplitudes of these quantities are vary. This procedure remains valid when a nonlocal elastic solid is replaced with an elastic one.

키워드

참고문헌

  1. Abouelregal, A.E., Akgoz, B. and Civalek, O. (2023), "Magneto-thermoelastic interactions in an unbounded orthotropic viscoelastic solid under the hall current effect by the fourth-order Moore-Gibson-Thompson equation", Comput. Math. Appl., 141, 102-115. https://doi.org/10.1016/j.camwa.2023.04.001. 
  2. Alharbi, A.M., Othman, M.I.A. and Al-Autabi, A.M.K. (2021), "Three-phase-lag model on a micropolar magnetothermoelastic medium with voids", Struct. Eng. Mech., 78(2), 187-197. https://doi.org/10.12989/sem.2021.78.2.187.
  3. Arefi, M., Mohammad-Rezaei Bidgoli, E., Dimitri, R., Tornabene, F. and Reddy, J.N. (2019), "Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on pasternak foundations", Appl. Sci., 9(8), 1580. https://doi.org/10.3390/app9081580.
  4. Arefi, M., Kiani Moghaddam, S., Mohammad-Rezaei Bidgoli, E., Kiani, M. and Civalek, O. (2021), "Analysis of graphene nanoplatelet reinforced cylindrical shell subjected to thermo-mechanical loads", Compos. Struct., 255, 112924. https://doi.org/10.1016/j.compstruct.2020.112924.
  5. Arefi, M., Mohammad-Rezaei Bidgoli, E. and Civalek, O. (2022), "Bending response of FG composite doubly curved nanoshells with thickness stretching via higher-order sinusoidal shear theory", Mech. Base. Des. Struct. Mach., 50(7), 2350-2378. https://doi.org/10.1080/15397734.2020.1777157.
  6. Bayones, F.S. and Hussien, N.S. (2017), "Propagation of Rayleigh waves in fiber-reinforced anisotropic solid thermo-viscoelastic media under effect of rotation", Appl. Math. Inf. Sci., 11(5), 1527-1535. http://doi.org/10.18576/amis/110532.
  7. Belfield, A.J., Rogers, T.G. and Spencer, A.J.M. (1983), "Stress in elastic plates reinforced by fiber lying in concentric circles", J. Mech. Phys. Solid., 31(1), 25-54. https://doi.org/10.1016/0022-5096(83)90018-2.
  8. Biot, M.A. (1965), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351.
  9. Bosaeed, A., Hussien, N.S. and Bayones, F.S. (2019), "Influence of rotation and initial stress on propagation of Rayleigh waves in fiber-reinforced solid anisotropic magneto-thermo-viscoelastic media", J. Progr. Res. Math., 14(3), 2419-2436.
  10. Cristescu, N., Craciun, E.M. and Soos, E. (2004), Mechanics of Elastic Composites (Modern Mechanics and Mathematics, 1, 1 st Edition, Chapman & Hall/CRC Press, Boca Raton, FL, USA.
  11. Eringen, A.C. (1972a), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  12. Eringen, A.C. and Edelen, D.G.B. (1972b), "On nonlocal elastic", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
  13. Eringen, A.C. (1974), "Theory of nonlocal thermoelasticity", Int. J. Eng. Sci., 12(12), 1063-1077. https://doi.org/10.1016/0020-7225(74)90033-0.
  14. Ghorbanpour-Arani, A., Khoddami Maraghi, Z. and Ghorbanpour Arani, A. (2023), "The frequency response of intelligent composite sandwich plate under biaxial in-plane forces", J. Sol. Mech., 15(1), 1-18. https://doi.org/10.22034/JSM.2020.1895607.1563.
  15. Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2(1), 1-7. https://doi.org/10.1007/BF00045689.
  16. Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulate of thermo-mechanics", Proc. Roy. Soc. A, 432(1885), 171-194. https://doi.org/10.1098/rspa.1991.0012.
  17. Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress, 15(2), 253-264. https://doi.org/10.1080/01495739208946136.
  18. Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31(3), 189-208. https://doi.org/10.1007/BF00044969.
  19. Gupta, R. (2013), "Reflection of waves in visco-thermoelastic transversely isotropic medium", Int. J. Comput. Meth. Eng. Sci. Mech., 14(2), 83-89. https://doi.org/10.1080/15502287.2012.698705.
  20. Koltunov, M. (1976), Creeping and Relaxation, Vysshaya Shkola, Moscow, Russia.
  21. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermo-elasticity", J. Mech. Phys. Solid, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
  22. Marin, M., Agarwal, R.P. and Codarcea, L. (2017), "A mathematical model for three-phase-lag dipolar thermoelastic bodies", J. Inequal. Applicat., 2017, 109. https://doi.org/10.1186/s13660-017-1380-5.
  23. Marin, M., Ochsner, A. and Craciun, E.M. (2020a), "A generalization of the Gurtin's variational principle in thermoelasticity without energy dissipation of dipolar bodies", Contin. Mech. Thermodyn., 32(11), 1685-1694. https://doi.org/10.1007/s00161-020-00873-5. 
  24. Marin, M., Ochsner, A. and Craciun, E.M. (2020b), "A generalization of the Saint-Venant's principle for an elastic body with dipolar structure", Contin. Mech. Thermodyn., 32(1), 269-278. https://doi.org/10.1007/s001161-019-00827-6.
  25. Mohammad-Rezaei Bidgoli, E. and Arefi, M. (2021), "Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation", J. Sand. Struct. Mater., 23(2), 436-472. https://doi.org/10.1177/1099636219839302.
  26. Mohammad-Rezaei Bidgoli, E., Arefi, M. and Mohammadimehr, M. (2022a), "Free vibration analysis of honeycomb doubly curved shell integrated with CNT-reinforced piezoelectric layers", Mech. Base. Des. Struct. Mach., 50(12), 4409-4440. https://doi.org/10.1080/15397734.2020.1836969.
  27. Mohammad-Rezaei Bidgoli, E. and Arefi, M. (2022b), "19 - Free vibration analysis of microplates reinforced with functionally graded graphene nanoplatelets", Innovations in Graphene-Based Polymer Composites, Elsevier Ltd., Amsterdam, Netherlands.
  28. Mohammad-Rezaei Bidgoli, E. and Arefi, M. (2023a), "Nonlinear vibration analysis of sandwich plates with honeycomb core and graphene nanoplatelet-reinforced face-sheets", Arch. Civil Mech. Eng., 23, 56. https://doi.org/10.1007/s43452-022-00589-0.
  29. Mohammad-Rezaei Bidgoli, E. and Arefi, M. (2023b), "Effect of porosity and characteristics of carbon nanotube on the nonlinear characteristics of a simply-supported sandwich plate", Arch. Civil Mech. Eng., 23, 214. https://doi.org/10.1007/s43452-023-00752-1.
  30. Mohammad-Rezaei Bidgoli, E. and Arefi, M. (2023c), "Dynamic results of GNPRC sandwich shells", Steel Compos. Struct., 48(3), 263-273. https://doi.org/10.12989/scs.2023.48.3.263.
  31. Othman, M.I.A. (2009), "Effect of rotation in case of 2-D problem of the generalized thermo-viscoelasticity with two relaxation times", Mech. Mech. Eng., 13(2), 105-127.
  32. Othman, M.I.A. and Fekry, M. (2018), "Effect of rotation and gravity on generalized thermo-viscoelastic medium with voids", Multidiscipl. Model. Mater. Struct., 14(2), 322-338. https://doi.org/10.1108/MMMS08-2017-0082.
  33. Othman, M.I.A., Said, S.M. and Marin, M. (2019), "A novel model of plane waves of two-temperature fiberreinforced thermoelastic medium under the effect of gravity with three-phase lag model", Int. J. Numer. Method Heat Fluid Flow, 29(12), 4788-4806. https://doi.org/10.1108/HFF-04-2019-0359.
  34. Othman, M.I.A. and Mondal, S. (2020), "Memory dependent-derivative effect on wave propagation of micropolar thermo-elastic medium under pulsed laser heating with three theories", Int. J. Numer. Method. Heat Fluid Flow, 30(3), 1025-1046. https://doi.org/10.1108/HFF-05-2019-0402.
  35. Othman, M.I.A., Said, S.M. and Eldemerdash, M.G. (2023), "Effect of nonlocal on poro-thermoelastic solid with dependent properties on refrence temperature via the three-phase-lag model", J. Mater. Appl., 12(1), 21-30. https://doi.org/10.32732/jma.2023.12.1.21.
  36. Rajak, D.K., Pagar, D.D., Menezes, P.L. and Linul, E. (2019), "Fiber-reinforced polymer composites. manufacturing, properties, and applications", Polym., 11(10), 1667. https://doi.org/10.3390/polym11101667.
  37. Roy Choudhuri, S.K. (2007), "On a thermoplastic three-phase-lag model", J. Therm. Stress, 30(3), 231-238. https://doi.org/10.1080/01495730601130919.
  38. Said, S.M. (2020), "Novel model of thermo-magneto-viscoelastic medium with variable thermal conductivity under effect of gravity", Appl. Math. Mech., 41(5), 819-832. https://doi.org/10.1007/s10483-020-2603-9.
  39. Said, S.M., Abd- Elaziz, E.M. and Othman, M.I.A. (2020), "Modeling of memory-dependent derivative in a rotating magneto-thermoelastic diffusive medium with variable thermal conductivity", Steel Compos. Struct., 36(6), 617-629. https://doi.org/10.12989/scs.2020.36.6.617.
  40. Said, S.M. (2022), "A viscoelastic-micropolar solid with voids and micro-temperatures under the effect of the gravity field", Geomech. Eng., 31(2), 159-166. https://doi.org/10.12989/gae.2022.31.2.159.
  41. Said, S.M., Othman, M.I.A. and Eldemerdash, M.G. (2022), "A novel model on nonlocal thermoelastic rotating porous medium with memory-dependent derivative", Multidiscipl. Model. Mater. Struct., 18(5), 793-807. https://doi.org/10.1108/MMMS-05-2022-0085.
  42. Sheoran, S.S., Kalkal, K.K. and Deswal, S. (2016), "Fractional order thermo-viscoelastic problem with temperature dependent modulus of elasticity", Mech. Adv. Mater. Struct., 23(4), 407-414. https://doi.org/10.1080/15376494.2014.981621.
  43. Tzou, D.Y. (1995), "A unified field approach for heat conduction from macro-to micro-scales", ASME J. Heat Transf., 117(1), 8-16. https://doi.org/10.1115/1.2822329.
  44. Zhang, L. (2015), "The application of composite fiber materials in sports equipment", 2015 International Conference on Education, Management, Information and Medicine, Shenyang, China, April.