DOI QR코드

DOI QR Code

The Impact of Calcium Depletion on Proliferation of Chlorella sorokiniana Strain DSCG150

  • Soontae Kang (Daesang Cellgene Corporation) ;
  • Seungchan Cho (Daesang Cellgene Corporation) ;
  • Danhee Jeong (Daesang Cellgene Corporation) ;
  • Urim Kim (Daesang Cellgene Corporation) ;
  • Jeongsug Kim (Daesang Cellgene Corporation) ;
  • Sangmuk Lee (Daesang Cellgene Corporation) ;
  • Yuchul Jung (Daesang Cellgene Corporation)
  • Received : 2024.03.11
  • Accepted : 2024.05.09
  • Published : 2024.07.28

Abstract

This study analyzed the effects of Ca2+ metal ions among culture medium components on the Chlorella sorokiniana strain DSCG150 strain cell growth. The C. sorokiniana strain DSCG150 grew based on a multiple fission cell cycle and growth became stagnant in the absence of metal ions in the medium, particularly Ca2+. Flow cytometry and confocal microscopic image analysis results showed that in the absence of Ca2+, cell growth became stagnant as the cells accumulated into four autospores and could not transform into daughter cells. Genetic analysis showed that the absence of Ca2+ caused upregulation of calmodulin (calA) and cell division control protein 2 (CDC2_1) genes, and downregulation of origin of replication complex subunit 6 (ORC6) and dual specificity protein phosphatase CDC14A (CDC14A) genes. Analysis of gene expression patterns by qRT-PCR showed that the absence of Ca2+ did not affect cell cycle progression up to 4n autospore, but it inhibited Chlorella cell fission (liberation of autospores). The addition of Ca2+ to cells cultivated in the absence of Ca2+ resulted in an increase in n cell population, leading to the resumption of C. sorokiniana growth. These findings suggest that Ca2+ plays a crucial role in the fission process in Chlorella.

Keywords

References

  1. DeFalco TA, Bender KW, Snedden WA. 2010. Breaking the code: Ca2+ sensors in plant signalling. Biochem. J. 425: 27-40. 
  2. DvOrakova-Hladka J. 1976. The effect of calcium on the growth of Chlorella and Scenedesmus. Biologia plantarum. 18: 214-220. 
  3. Di Caprio F, Altimari P, Pagnanelli F. 2018. Effect of Ca2+ concentration on Scenedesmus sp. growth in heterotrophic and photoautotrophic cultivation. New Biotechnol. 40: 228-235. 
  4. Husseini ZN, Tafreshi SAH, Aghaie P, Toghyani MA. 2020. CaCl2 pretreatment improves gamma toxicity tolerance in microalga Chlorella vulgaris. Ecotoxicol. Environ. Saf. 192: 110261. 
  5. Gorain PC, Bagchi SK, Mallick N. 2013. Effects of calcium, magnesium and sodium chloride in enhancing lipid accumulation in two green microalgae. Environ. Technol. 34: 1887-1894. 
  6. Loneragan J. 1959. Calcium in the nitrogen metabolism of subterranean clover. 
  7. Chao L, Weiqian C, Yun L, Hao H, Liang C, Xiaoqing L, et al. 2009. Cerium under calcium deficiency-influence on the antioxidative defense system in spinach plants. Plant Soil 323: 285-294. 
  8. Hazelton B, Mitchell B, Tupper J. 1979. Calcium, magnesium, and growth control in the WI-38 human fibroblast cell. J. Cell Biol. 83: 487-498. 
  9. Boynton A, Whitfield J, Isaacs R. 1976. The different roles of serum and calcium in the control of proliferation of BALB/c 3T3 mouse cells. In Vitro Plant 12: 120-123. 
  10. Hickie RA, Wei JW, Blyth LM, Wong DY, Klaassen DJ. 1983. Cations and calmodulin in normal and neoplastic cell growth regulation. Can. J. Biochem. Cell Biol. 61: 934-941. 
  11. Kahl CR, Means AR. 2003. Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocrine Rev. 24: 719-736. 
  12. Taules M, Rius E, Talaya D, Lopez-Girona A, Bachs O, Agell N. 1998. Calmodulin is essential for cyclin-dependent kinase 4 (Cdk4) activity and nuclear accumulation of cyclin D1-Cdk4 during G1. J. Biol. Chem. 273: 33279-33286. 
  13. Tombes RM, Grant S, Westin EH, Krystal G. 1995. G1 cell cycle arrest and apoptosis are induced in NIH 3T3 cells by KN-93, an inhibitor of CaMK-II (the multifunctional Ca2+/CaM kinase). Cell Growth Differ. 6: 1063-1070. 
  14. Morris TA, DeLorenzo RJ, Tombes RM. 1998. CaMK-II inhibition reduces cyclin D1 levels and enhances the association of p27kip1with Cdk2 to cause G1 arrest in NIH 3T3 cells. Exp. Cell Res. 240: 218-227. 
  15. Takuwa N, Zhou W, Kumada M, Takuwa Y. 1992. Ca2+/calmodulin is involved in growth factor-induced retinoblastoma gene product phosphorylation in human vascular endothelial cells. FEBS Lett. 306: 173-175. 
  16. Thyberg J, Hansson GK. 1991. Cyclosporine A inhibits induction of DNA synthesis by PDGF and other peptide mitogens in cultured rat aortic smooth muscle cells and dermal fibroblasts. Growth Factors 4: 209-219. 
  17. Tomono M, Toyoshima K, Ito M, Amano H, Kiss Z. 1998. Inhibitors of calcineurin block expression of cyclins A and E induced by fibroblast growth factor in Swiss 3T3 fibroblasts. Arch. Biochem. Biophys. 353: 374-378. 
  18. Khanna AK, Hosenpud JD. 1999. Cyclosporine induces the expression of the cyclin inhibitor p21. Transplantation 67: 1262-1268. 
  19. Marechal E. 2021. Grand challenges in microalgae domestication. Front. Plant Sci. 12: 764573. 
  20. Rioboo C, O'Connor JE, Prado R, Herrero C, Cid A. 2009. Cell proliferation alterations in Chlorella cells under stress conditions. Aquatic Toxicol. 94: 229-237. 
  21. Bisova K, Zachleder V. 2014. Cell-cycle regulation in green algae dividing by multiple fission. J. Exper. Bot. 65: 2585-2602. 
  22. Endo H, Nakajima K, Chino R, Shirota M. 1974. Growth characteristics and cellular components of Chlorella regularis, heterotrophic fast growing strain. Agric. Biol. Chem. 38: 9-18. 
  23. Xu N, You Y, Liu C, Balasov M, Lun LT, Geng Y, et al. 2020. Structural basis of DNA replication origin recognition by human Orc6 protein binding with DNA. Nucleic Acids Res. 48: 11146-11161. 
  24. Balasov M, Huijbregts RP, Chesnokov I. 2009. Functional analysis of an Orc6 mutant in Drosophila. Proc. Natl . Acad. Sci. USA 106: 10672-10677. 
  25. Balasov M, Huijbregts RP, Chesnokov I. 2007. Role of the Orc6 protein in origin recognition complex-dependent DNA binding and replication in Drosophila melanogaster. Mol. Cell. Biol. 27: 3143-3153. 
  26. Mailand N, Lukas C, Kaiser BK, Jackson PK, Bartek J, Lukas J. 2002. Deregulated human Cdc14A phosphatase disrupts centrosome separation and chromosome segregation. Nat. Cell Biol. 4: 318-322. 
  27. Ovejero S, Ayala P, Malumbres M, Pimentel-Muinos FX, Bueno A, Sacristan MP. 2018. Biochemical analyses reveal amino acid residues critical for cell cycle-dependent phosphorylation of human Cdc14A phosphatase by cyclin-dependent kinase 1. Sci. Rep. 8: 11871. 
  28. Kuilman T, Maiolica A, Godfrey M, Scheidel N, Aebersold R, Uhlmann F. 2015. Identification of C dk targets that control cytokinesis. EMBO J. 34: 81-96. 
  29. Persechini A, Stemmer PM. 2002. Calmodulin is a limiting factor in the cell. Trends Cardiovasc. Med. 12: 32-37. 
  30. McCusker D, Denison C, Anderson S, Egelhofer TA, Yates 3rd JR, Gygi SP, et al. 2007. Cdk1 coordinates cell-surface growth with the cell cycle. Nat. Cell Biol. 9: 506-515.