DOI QR코드

DOI QR Code

Internal and External Changes in Reactive Oxygen Species (ROS) During the Growth Stages of Harmful Algal Bloom Species

적조생물의 성장단계에 따른 세포 내·외 Reactive Oxygen Species (ROS) 변화

  • Minji Lee (South Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Danbi Bang (South Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Seong-Su Shin (South Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Yoonja Kang (Department of Environmental Oceanography, Chonnam National University)
  • 이민지 (국립수산과학원 기후환경자원과) ;
  • 방단비 (국립수산과학원 기후환경자원과) ;
  • 신성수 (국립수산과학원 기후환경자원과) ;
  • 강윤자 (전남대학교 환경해양학과)
  • Received : 2024.05.31
  • Accepted : 2024.08.25
  • Published : 2024.08.31

Abstract

Reactive oxygen species (ROS) generated by harmful algal blooms (HABs) exert detrimental effects on aquaculture systems. Fish gill cells deteriorate upon exposure to HABs, suggesting that internally generated ROS in HABs influences the external environment. Therefore, we investigated the internal and external changes in ROS concentrations during growth using fluorescence staining of four representative HABs: Alexandrium affine, Chattonella marina, Karenia mikimotoi, and Margalefidinium polykrikoides. The concentrations of H2O2 and O2- produced by A. affine were low; H2O2 from M. polykrikoides was primarily detected internally throughout the experiments, and O2- was not detected. High H2O2 and O2- concentrations were observed in K. mikimotoi during the death phase, with weak external O2- concentrations. Regarding C. marina, which produces large amounts of ROS, H2O2 was observed internally during the exponential phase, whereas weak O2- concentrations were measured externally in the stationary phases. Collectively, our results highlight that ROS concentrations and internal/external distributions are functions of HABs and growth stage. These differences indicate the potential allelopathic mechanisms of proliferating HABs and suggest a possible impact of ROS on aquaculture organisms.

Keywords

Acknowledgement

이 연구는 2024년 국립수산과학원 수산과학연구사업 R2024010과 정부 (과학기술정보통신부)의 재원으로 한국연구재단의 지원(NRF2022R1C1C1008380)을 받아 수행된 연구입니다.

References

  1. Anderson DM. 1997. Turning back the harmful red tide. Nature 388, 513-514.
  2. Cho K, Ueno M, Liang Y, Kim D and Oda T. 2022. Generation of reactive oxygen species (ROS) by harmful algal bloom (HAB)-forming phytoplankton and their potential impact on surrounding living organisms. Antioxidants 11, 206. https://doi.org/10.3390/antiox11020206.
  3. Diaz JM and Plummer S. 2018. Production of extracellular reactive oxygen species by phytoplankton: Past and future directions. J Plankton Res 40, 655-666. https://doi.org/10.1093/plankt/fby039.
  4. Flores HS, Wikfors GH and Dam HG. 2012. Reactive oxygen species are linked to the toxicity of the dinoflagellate Alexandrium spp. to protists. Aquat Microb Ecol 66, 199-209. https://doi.org/10.3354/ame01570.
  5. Garate-Lizarraga I, Lopez-Cortes DJ, Bustillos-Guzman JJ and Hernandez-Sandoval F. 2004. Blooms of Cochlodinium polykrikoides (Gymnodiniaceae) in the Gulf of California, Mexico. Rev Biol Trop 52, 51-58.
  6. Griffith AW and Gobler CJ. 2016. Temperature controls the toxicity of the ichthyotoxic dinoflagellate Cochlodinium polykrikoides. Mar Ecol Prog Ser 545, 63-76. https://doi.org/10.3354/meps11590.
  7. Guillard RR. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Culture of Marine Invertebrate Animals. In: Smith WL and Chanley MH, eds. Springer, Boston, MA, U.S.A. https://doi.org/10.1007/978-1-4615-8714-9_3.
  8. Hansard SP, Vermilyea AW and Voelker BM. 2010. Measurements of superoxide radical concentration and decay kinetics in the Gulf of Alaska. Deep Sea Res Part I Oceanogr Res Pap 57, 1111-1119. https://doi.org/10.1016/j.dsr.2010.05.007.
  9. Hiroishi S, Okada H, Imai I and Takashi Y. 2005. High toxicity of the novel bloom-forming species Chattonella ovata (Raphidophyceae) to cultured fish. Harmful Algae 4, 783-787. https://doi.org/10.1016/j.hal.2004.12.008.
  10. Kim CS, Lee SG, Kim HG and Jung J. 1999. Reactive oxygen species as causative agents in the ichthyotoxicity of the red tide dinoflagellate Cochlodinium polykrikoides. J Plankton Res 21, 2105-2115. https://doi.org/10.1093/plankt/21.11.2105.
  11. Kim CS, Lee SG and Kim HG. 2000. Biochemical responses of fish exposed to a harmful dinoflagellate Cochlodinium polykrikoides. J Exp Mar Biol Ecol 254, 131-141. https://doi.org/10.1016/S0022-0981(00)00263-X.
  12. Kim D, Nakamura A, Okamoto T, Komatsu N, Oda T, Iida T, Ishimatsu A and Muramatsu T. 2000. Mechanisms of superoxide anion generation in the toxic red tide phytoplankton Chattonella marina: Possible involvement of NAD(P)H oxidase. Biochim Biophys Acta 1524, 220-227. https://doi.org/10.1016/s0304-4165(00)00161-6.
  13. Kim D, Oda T, Muramatsu T, Kim D, Matsuyama Y and Honjo T. 2002. Possible factors responsible for the toxicity of Cochlodinium polykrikoides, a red tide phytoplankton. Comp Biochem Physiol Part C Toxicol Pharmacol 132, 415-423. https://doi.org/10.1016/S1532-0456(02)00093-5.
  14. Kim D, Watanabe M, Nakayasu Y and Kohata K. 2005. Changes in O2 and H2O2 production by Chattonella antiqua during diel vertical migration under nutrient stratification. Aquat Microb Ecol 39, 183-191. https://doi.org/10.3354/ame039183.
  15. Kim D, Nakashima T, Matsuyama Y, Niwano Y, Yamaguchi K and Oda T. 2007. Presence of the distinct systems responsible for superoxide anion and hydrogen peroxide generation in red tide phytoplankton Chattonella marina and Chattonella ovata. J Plankton Res 29, 241-247. https://doi.org/10.1093/plankt/fbm011.
  16. Kim D, Wencheng L, Matsuyama Y, Cho K, Yamasaki Y, Takeshita S and Oda T. 2019. Extremely high level of reactive oxygen species (ROS) production in a newly isolated strain of the dinoflagellate Karenia mikimotoi. Eur J Phycol 54, 632-640. https://doi.org/10.1080/09670262.2019.1632936.
  17. Li X, Yan T, Lin J, Yu R and Zhou M. 2017. Detrimental impacts of the dinoflagellate Karenia mikimotoi in Fujian coastal waters on typical marine organisms. Harmful Algae 61, 1-12. https://doi.org/10.1016/j.hal.2016.11.011.
  18. Marshall JA, de Salas M, Oda T and Hallegraeff G. 2005. Superoxide production by marine microalgae: I. Survey of 37 species from 6 classes. Mar Biol 147, 533-540. https://doi.org/10.1007/s00227-005-1596-7.
  19. Marshall JA, Nichols PD, Hamilton B, Lewis RJ and Hallegraeff GM. 2003. Ichthyotoxicity of Chattonella marina (Raphidophyceae) to damselfish (Acanthochromis polycanthus): The synergistic role of reactive oxygen species and free fatty acids. Harmful Algae 2, 273-281. https://doi.org/10.1016/S1568-9883(03)00046-5.
  20. Mooney BD, Dorantes-Aranda JJ, Place AR and Hallegraeff GM. 2011. Ichthyotoxicity of gymnodinioid dinoflagellates: PUFA and superoxide effects in sheepshead minnow larvae and rainbow trout gill cells. Mar Ecol Prog Ser 426, 213-224. https://doi.org/10.3354/meps09036.
  21. NIFS (National Institute of Fisheries Science). 2023. Study on the Impact of the Harmful Algae on the Physiologic Change and Mortality of Cultured Marine Fish. NIFS, Busan, Korea.
  22. Oda T, Moritomi J, Kawano I, Hamaguchi S, Ishimatsu A and Muramatsu T. 1995. Catalase-induced and superoxide dismutaseinduced morphological changes and growth inhibition in the red tide phytoplankton Chattonella marina. Biosci Biotechnol Biochem 59, 2044-2048. https://doi.org/10.1271/bbb.59.2044.
  23. Oda TS, Nakamura A, Shikayama M, Kawano I, Ishimatsu A and Muramatsu T. 1997. Generation of reactive oxygen species by raphidophycean phytoplankton. Biosci Biotechnol Biochem 61, 1658-1662. https://doi.org/10.1271/bbb.61.1658.
  24. Portune KJ, Cary SC and Warner ME. 2010. Antioxidant enzyme response and reactive oxygen species production in marine raphidophytes. J Phycol 46, 1161-1171. https://doi.org/10.1111/j.1529-8817.2010.00906.x.
  25. Rusak SA, Peake BM, Richard LE, Nodder SD and Cooper WJ. 2011. Distributions of hydrogen peroxide and superoxide in seawater east of New Zealand. Mar Chem 127, 155-169. https://doi.org/10.1016/j.marchem.2011.08.005.
  26. Shin YK, Nam SE, Kim WJ, Seo DY, Kim YJ and Rhee JS. 2019. Red tide dinoflagellate Cochlodinium polykrikoides induces significant oxidative stress and DNA damage in the gill tissue of the red seabream Pagrus major. Harmful Algae 86, 37-45. https://doi.org/10.1016/j.hal.2019.04.008.
  27. Tang YZ and Gobler CJ. 2009. Characterization of the toxicity of Cochlodinium polykrikoides isolates from Northeast US estuaries to finfish and shellfish. Harmful Algae 8, 454-462. https://doi.org/10.1016/j.hal.2008.10.001.
  28. Tang YZ and Gobler CJ. 2010. Allelopathic effects of Cochlodinium polykrikoides isolates and blooms from the estuaries of Long Island, New York, on co-occurring phytoplankton. Mar Ecol Prog Ser 406, 19-31. https://doi.org/10.3354/meps08537.
  29. Twiner MJ, Dixon SJ and Trick CG. 2001. Toxic effects of Heterosigma akashiwo do not appear to be mediated by hydrogen peroxide. Limnol Oceanogr 46, 1400-1405. https://doi.org/10.4319/lo.2001.46.6.1400.
  30. Yang H, Gobler CJ and Tang YZ. 2022. Consistency between the ichthyotoxicity and allelopathy among strains and ribotypes of Margalefidinium polykrikoides suggests that its toxins are allelochemicals. Front Mar Sci 9, 941205. https://doi.org/10.3389/fmars.2022.941205.
  31. Yamasaki Y, Kim DI, Matsuyama Y, Oda T and Honjo T. 2004. Production of superoxide anion and hydrogen peroxide by the red tide dinoflagellate Karenia mikimotoi. J Biosci Bioeng 97, 212-215. https://doi.org/10.1016/S1389-1723(04)70193-0.