DOI QR코드

DOI QR Code

인공습지 설계를 위한 여재 아세트아미노펜 흡착능 실험

Research on Adsorption Capacity of Acetaminophen for Constructed Wetland Design

  • 홍진 (서울과학기술대학교 건설시스템공학과) ;
  • 김유현 (서울과학기술대학교 건설시스템공학과) ;
  • 길경익 (서울과학기술대학교 건설시스템공학과)
  • Jin Hong (Department of Civil Engineering, Seoul National University of Science and Technology) ;
  • Yuhyeon Kim (Department of Civil Engineering, Seoul National University of Science and Technology) ;
  • Kyungik Gil (Department of Civil Engineering, Seoul National University of Science and Technology)
  • 투고 : 2024.08.08
  • 심사 : 2024.08.13
  • 발행 : 2024.08.31

초록

산업화로 인해 의약품과 개인위생 용품 (PPCPs)의 잔여물이 생태계로 미량 유입됨에 따라 생태계를 오염시킨다. 특히나 코로나 이후의 아세트아미노펜 검출되는 양의 증가로 인하여 방류수 내로 유입되는 미량 오염물질을 제거하고자 하였다. 인공습지에 적합하다고 판단되는 6가지의 여재를 선정하여 등온흡착 실험을 진행하였다. 아세트아미노펜의 최대 제거율을 산정하기 위해 Langmuir식과 Freundlich식을 사용하였다. 이 중 Freundlich식이 0.9823로 더 높은 결괏값을 나타내었다. 도심 내 인공습지 형성 시 적용하여 습지에서의 아세트아미노펜 저감률을 모델링하고자 하였다.

Due to industrialization, a trace amount of residues of pharmaceuticals and personal hygiene products (PPCPs) flows into the ecosystem, polluting the ecosystem. In particular, it was intended to remove trace pollutants flowing into the effluent due to the increase in the amount of acetaminophen detected after COVID 19. To conduct this experiment, selected 6 media which are suitable for construcgted wetland and isothermal adsorption experiments. Langmuir equation and the Freundlich equation were used to calculate the maximum removal rate of acetaminophen. Among them, the Freundlich equation showed a higher result value of 0.9823. It was applied when forming constructed wetlands in urban areas to model the reduction rate of acetaminophen in wetlands.

키워드

과제정보

본 결과물은 환경부의 재원으로 한국환경산업기술원의 습지생태계 가치평가 및 탄소흡수 가치증진 기술개발사업의 지원을 받아 연구되었습니다(2022003630005).

참고문헌

  1. Blake, G.R.,(1965a). "Bulk Density". Methods of Soil Analysis. Part 1. Physical and Mineralogical properties. American Society of Agronomy, Inc., Madison, WI, pp. 374-390
  2. Blake, G.R. (1965b). "Particle Density". Methods of Soil Analysis. Part 1. Physical and Mineralogical Properties". American Society of Agronomy, Inc., Madison, WI, pp. 371-37
  3. Cantrell, KJ, Serne, RJ, Last GV(2003). Applicability of the Linear Sorption Isotherm Model to Represent Contaminant Transport Processes in Site-Wide Performance Assessments. Pacific Northwest National Laboratory. Technical report PNNL-14576. 2003. p.1-6.
  4. Freundlich, H. (1907). "?ber die adsorption in l?sungen. Zeitschrift f?r physikalische Chemie", 57(1), pp. 385-470.
  5. Goel, S., Palmkvist, M., Moll, K., Joannin, N., Lara, P., R Akhouri, R., and Wahlgren, M. (2015). RIFINs are adhesins implicated in severe Plasmodium falciparum malaria. Nature medicine, 21(4), pp 314-317.
  6. Hamdaoui, O., and Naffrechoux, E. (2007). Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part II. Models with more than two parameters. J. of hazardous materials, 147(1-2), pp 401-411.
  7. Ho, Y. S., Huang, C. T., and Huang, H. W. (2002). Equilibrium sorption isotherm for metal ions on tree fern. Process Biochemistry, 37(12), pp 1421-1430.
  8. Kai, H. E., Yonetani, T., Takabe, Y., Rahmawati, S., Echigo, S., and Itoh, S. (2014). "Removals of Pharmaceuticals and Personal Care Products in Reclaimed Water during Soil Aquifer Treatment with Different Soil Types, Hydraulic Retention Time, and Saturated Condition," in The International Slow Sand and Alternative Biological Filtration Conference (IEEE).
  9. Kang. M., J. and Sohn. S. J. Nature-based Solutions from the Perspective of R&I. STEPI Insight, 281(0), 1-50.
  10. Kim, J. H., Park, C. K., Kim, M. Y., and Ahn, S. G.(2008) Analysis of Pharmaceutical Residues on Aquatic Environment using LC/MS. J. of the Korean Society for Environmental Analysis 11(2), pp 99~108
  11. Korea Food & Drug Administration. (KFDA) (2012), "The Korean Pharmacopoeia 10th edition." The KFDA Notification No. 2012-129
  12. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society, 40(9), 1361-1403.
  13. Lee, HY and Park, SA (2017). A Comparative Study on Major Issues in the Chemical Substance Management Act of EU, USA and Japan. J of Law and Politics research. 17(4), pp. 31-65 [DOI http://dx.doi.org/10.17926/kaolp.2017.17.4.31]
  14. Liu, J. L., and Wong, M. H. (2013). "Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China". Environment international, 59, pp 208-224.
  15. Li, L., Zhao, X., Liu, D., Song, K., Liu, Q., and He, Y. (2021). Occurrence and ecological risk assessment of PPCPs in typical inflow rivers of Taihu lake, China. J. of Environmental Management, 285, p 112176.
  16. Mahmoudi, K., Hosni, K., Hamdi, N., Srasra, E., 2015. Kinetics and Equilibrium Studies on Removal of Methylene Blue and Methyl Orange by Adsorption onto Activated Carbon Prepared from Date Pits-A Comparative Study, Korean J. of Chemical Engineering 32, p. 274.
  17. Margenau, H., 1939. Van Der Waals Forces, Reviews of Modern Physics 11, p. 1.
  18. Mourabet, M., El Boujaady, H., El Rhilassi, A., Ramdane, H., Bennani-Ziatni, M., El Hamri, R., and Taitai, A. (2011). Defluoridation of water using Brushite: Equilibrium, kinetic and thermodynamic studies. Desalination, 278(1-3), pp 1-9.
  19. Palmiotto, M., Castiglioni, S., Zuccato, E., Manenti, A., Riva, F., and Davoli, E. (2018). "Personal Care Products in Surface, Ground and Wastewater of a Complex Aquifer System, a Potential Planning Tool for contemporary urban settings." J. of environmental management 214, pp. 76-85.
  20. Radwan, E. K., Ibrahim, M. B. M., Adel, A., and Farouk, M. (2020). The Occurrence and Risk Assessment of Phenolic Endocrine-Disrupting Chemicals in Egypt's Drinking and Source Water. Environ. Sci. Pollut. Res. 27 (2), pp 1776~1788.