DOI QR코드

DOI QR Code

지역적 수신기 네트워크에서 Kalman 필터를 사용한 상대적인 GPS/Galileo 위성 및 수신기 IFB 추정

Estimation of the Relative GPS/Galileo Satellite and Receiver IFBs using a Kalman Filter in a Regional Receiver Network

  • 김희성 ;
  • 손민혁
  • Heesung Kim (Satellite Navigation R&D Division, Korea Aerospace Research Institute) ;
  • Minhyuk Son (Satellite Navigation R&D Division, Korea Aerospace Research Institute)
  • 투고 : 2024.08.15
  • 심사 : 2024.08.30
  • 발행 : 2024.09.15

초록

Satellite and receiver Inter-Frequency Biases (IFBs) should be estimated or calibrated by pre-defined values for generating precise navigation messages and augmentation data in satellite navigation systems or the augmentation system. In this paper, a Kalman filter is designed and implemented to estimate the ionospheric delay and satellite/receiver IFBs using a regional receiver network. First, an ionospheric model and its filter parameter is defined based on previous studies. Second, a measurement model for estimating the relative satellite/receiver IFBs without any constraints is proposed. Third, a procedure for ensuring the continuity of estimation is proposed in this paper. To verify the performance of the designed filter, six Continuously Operating Reference Stations (CORSs) are selected. Finally, the stability and accuracy of satellite/receiver IFB estimation are analyzed.

키워드

과제정보

본 연구는 국토교통부 위성항법보정시스템 안전운용기술개발사업 연구비지원 (RS-2021-KA164208)에 의해 수행되었습니다.

참고문헌

  1. Authie, T., Dall'Orso, M., Trilles, S., Choi, H. H., Kim, H. S., et al. 2017, Performances Monitoring and Analysis for KASS, International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+2017), Portland, Oregon, USA, 25-29 Sep 2017, pp.958-978. https://doi.org/10.33012/2017.15405
  2. Chen, P., Zhang, Y., Wang, R., An, Z., & Yao, Y. 2023, A Novel Approach for Establishing the Global Ionospheric Model with High Spatiotemporal Resolution, in IEEE Transactions on Geoscience and Remote Sensing, 61, 1-12. https://doi.org/10.1109/TGRS.2023.3238044
  3. Choi, B. K., Lee, W. K., Cho, S. K., Park, J. U., & Park, P. H. 2010, Global GPS Ionospheric Modelling Using Spherical Harmonic Expansion Approach, Journal of Astronomy and Space Sciences, 27, 359-366. https://doi.org/10.5140/jass.2010.27.4.359
  4. Erdogan, E., Schmidt, M., Seitz, F., & Durmaz, M. 2017, Near real-time estimation of ionosphere vertical total electron content from GNSS satellites using B-splines in a Kalman filter, Annales Geophysicae, 35, 263-277. https://doi.org/10.5194/angeo-35-263-2017
  5. GNSS Data Center, Data Service, cited 2024 June 25, available from: https://www.gnssdata.or.kr/
  6. Han, D. H. 2018, A Study on Improving the Accuracy of SBAS Ionosphere Correction by Applying Double-difference Carrier Phase Measurements, Ph.D. Thesis, Seoul National University.
  7. Hauschild, A. & Montenbruck, O. 2016, The Effect of Correlator and Front-End Design on GNSS Pseudorange Biases for Geodetic Receivers, Journal of the Institute of Navigation, 63, 443-453. https://doi.org/10.1002/navi.165
  8. International GNSS Service (IGS) 2018, RINEX-The Receiver Independent Exchange Format (Version 3.04), RINEX WG & RTCM-SC104. https://files.igs.org/pub/data/format/rinex304.pdf
  9. International GNSS Service (IGS) 2023, IGS switch to IGS20/igs20.atx and repro3 standards, cited 2023 Jan 21, available from: https://igs.org/news/igs20/
  10. International GNSS Service (IGS) 2024, MGEX Data & Product : Differential Code Biases, cited 2024 Feb 28, available from: http://igs.org/mgex/dataproducts/#dcb
  11. Kim, J., Noh, J. H., & Lee, H. K. 2012, Error Analysis of Inter-Frequency Bias Estimation in Global Navigation Satellite System Signals, Journal of the Korean Society for Aviation and Aeronautics, 20, 16-21. https://doi.org/10.12985/ksaa.2012.20.3.016
  12. Ma, G. & Maruyama, T. 2003, Derivation of TEC and estimation of instrumental biases from GEONET in Japan, Annales Geophysicae, 21, 2083-2093. https://doi.org/10.5194/angeo-21-2083-2003
  13. Maheshwari, M., Nirmala, S., Kavitha, S., & Ratanakara, S. C. 2019, Kalman filter based estimation of differential hardware biases with triangular interpolation technique for IRNSS, Advances in Space Research, 63, 1051-1064. https://doi.org/10.1016/j.asr.2018.09.031
  14. Montenbruck, O., Hauschild, A., & Steigenberger, P. 2014, Differential Code Bias Estimation using Multi-GNSS Observations and Global Ionosphere Maps, Journal of Institute of Navigation, 61, 191-201. https://doi.org/10.1002/navi.64
  15. Schaer, S. 1999, Mapping and predicting the Earth's ionosphere using the Global Positioning System, Ph.D. Thesis, Astronomical Institute, University of Berne, Switzerland.
  16. Steigenberger, P., Montenbruck, O., & Hessels, U. 2015, Performance evaluation of the early CNAV navigation message, Journal of the Institute of Navigation, 62, 219-228. https://doi.org/10.1002/navi.111
  17. Sunehra, D. 2016, TEC and Instrumental Bias Estimation of GAGAN Station Using Kalman Filter and SCORE Algorithm, Positioning, 7, 41-50. https://doi.org/10.4236/pos.2016.71004
  18. Tetewsky, A., Ross, J., Soltz, A., Vaughn, N., Anszperger, J., et al. 2009, Making sense of inter-signal corrections: accounting for GPS satellite calibration parameters in legacy and modernized ionosphere correction algorithms, Inside GNSS, Jul/Aug 2009, available from: https://insidegnss.com/
  19. Walter, T., Blanch, J., Phelts, R. E., & Enge, P. 2012, Evolving WAAS to serve L1/L5 users, Navigation, 59, 317-327. https://doi.org/10.1002/navi.21
  20. Wang, A., Chen, J., Zhang, Y., Wang, J., & Wang, B. 2019a, Performance Evaluation of the CNAV Broadcast Ephemeris, Journal of Navigation, 72, 1331-1344. https://doi.org/10.1017/S037346331900016X
  21. Wang, N., Li, Z., Montenbruck, O., & Tang, C. 2019b, Quality assessment of GPS, Galileo and BeiDou-2/3 satellite broadcast group delays, Advances in Space Research, 64, 1764-1779. https://doi.org/10.1016/j.asr.2019.07.029
  22. Wang, Y., Zhao, L., & Gao, Y. 2021, Estimation and Analysis of GNSS Differential Code Biases (DCBs) Using a Multi-Spacing Software Receiver, Sensors, 21, 443. https://doi.org/10.3390/s21020443
  23. Yun, H., Han, D. H., & Kee, C. D. 2013, Performance Verification of Korean Wide Area Differential GNSS Ground Segment, Journal of Navigation and Port Research, 37, 49-54. https://doi.org/10.5394/KINPR.2013.37.1.49
  24. Zhang, Q. & Zhao, Q. 2019, Analysis of the data processing strategies of spherical harmonic expansion model on global ionosphere mapping for moderate solar activity, Advances in Space Research, 63, 1214-1226. https://doi.org/10.1016/j.asr.2018.10.031