DOI QR코드

DOI QR Code

2024년 5월 11일 강한 지자기 폭풍에 의한 GNSS PPP 측위 오차 분석

Analysis of GNSS PPP Positioning Errors Due to Strong Geomagnetic Storm on May 11, 2024

  • Byung-Kyu Choi (Space Science Division, Korea Astronomy and Space Science Institute) ;
  • Junseok Hong (Space Science Division, Korea Astronomy and Space Science Institute) ;
  • Dong-Hyo Sohn (Space Science Division, Korea Astronomy and Space Science Institute) ;
  • Sul Gee Park (Maritime PNT Research Office, Korea Research Institute of Ships & Ocean Engineering) ;
  • Sang Hyun Park (Maritime PNT Research Office, Korea Research Institute of Ships & Ocean Engineering)
  • 투고 : 2024.08.05
  • 심사 : 2024.08.21
  • 발행 : 2024.09.15

초록

On May 11, 2024, there was a strong solar flare explosion. A powerful geomagnetic storm triggered by a solar flare caused a major ionospheric disturbance over the Korean Peninsula. When a geomagnetic storm occurred, an abnormal change in vertical total electron content (VTEC) values was detected at all Global Navigation Satellite System (GNSS) stations in the Korean Peninsula. In addition, we performed GNSS precise point positioning (PPP) processing using observations from the SBAO and MKPO stations. We found that the up-directional position error increased significantly in both stations at around 17:00 UT on the day of year (DOY) 132, 2024. At that point, the root mean square (RMS) values for all position errors (East, North, and Up) increased compared to other dates. Due to very high noise, the L1 signal-to-noise ratio (SNR) values of QZSS pseudo-random noise (PRN) 07 dropped to about 25 dB. As a result, we suggest that the strong geomagnetic storm increased the GNSS PPP position errors in the Korean Peninsula.

키워드

과제정보

This research was supported by a grant from the National R&D Project "Development of ground-based centimeter-level maritime precise PNT technologies" funded by the Ministry of Oceans and Fisheries (RS-2020-KS201371).

참고문헌

  1. Astafyeva, E., Yasyukevich, Y., Maksikov, A., & Zhivetiev, I. 2014, Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems, Space Weather, 12, 508-525. https://doi.org/10.1002/2014SW001072
  2. Berdermann, J., Kriegel, M., Banys, D., Heymann, F., Hoque, M. M., et al. 2018, Ionospheric response to the X9.3 flare on 6 September 2017 and its implication for navigation services over Europe, Space Weather, 16, 1604-1615. https://doi.org/10.1029/2018SW001933
  3. Burton, R. K., McPherron, R. L., & Russell, C. T. 1975, An empirical relationship between interplanetary conditions and Dst, JGR, 80, 4204-4214. https://doi.org/10.1029/JA080i031p04204
  4. Choi, B. K., Sohn, D. H., & Lee, S. J. 2021, Accuracy Improvement of Multi-GNSS Kinematic PPP with EKF Smoother, JPNT, 10, 293-303. https://doi.org/10.11003/JPNT.2021.10.2.293
  5. Davis, T. N. & Sugiura, M. 1966, Auroral electrojet activity index AE and its universal time variations, JGR, 71, 785-801. https://doi.org/10.1029/JZ071i003p00785
  6. Ho, M. C., Mannucci, A. J., Lindqwister, U. J., Pi, X., & Tsurutani, T. T. 1996, Global ionosphere perturbations monitored by the worldwide GPS network, Geophys. Res. Lett., 23, 3219-3222. https://doi.org/10.1029/96GL02763
  7. Jacobsen, K. S., & Schafer, S. 2012, Observed effects of a geomagnetic storm on an RTK positioning network at high latitudes, J. Space Weather Space Clim., 2, A13. https://doi.org/10.1051/swsc/2012013
  8. Jakowski, N, Schluter, S., & Sardon, E., 1999, Total electron content of the ionosphere during the geomagnetic storm on 10 January 1997, JASTP, 61, 299-307. https://doi.org/10.1016/S1364-6826(98)00130-8
  9. Lu, Y., Wang, Z., Ji, S., & Chen, W. 2020, Assessing the positioning performance under the effects of strong ionospheric anomalies with multi-GNSS in Hong Kong, Radio Science, 55, 1-18. https://doi.org/10.1029/2019RS007004
  10. Maruyama, T., Ma, G., & Nakamura, M. 2004, Signature of TEC storm on 6 November 2001 derived from dense GPS receiver network and ionosonde chain over Japan, JGR, 109, A10302. https://doi.org/10.1029/2004JA010451
  11. Odijk, D. 2001, Instantaneous precise GPS positioning under geomagnetic storm conditions, GPS Solutions, 5, 29-42. https://doi.org/10.1007/PL00012884
  12. Odolinski, R. & Teunissen, P. J. G. 2019, An assessment of smartphone and low-cost multi-GNSS single-frequency RTK positioning for low, medium and high ionospheric disturbance periods, Journal of Geodesy, 93, 701-722. https://doi.org/10.1007/s00190-018-1192-5
  13. Wu, J., Wu, S., Hajj, G., Bertiger, W., & Lichten, S. 1993, Effects of antenna orientation on GPS carrier phase, Manuscripta Geodaetica, 18, 91-98.
  14. Yasyukevich, A., Syrovatskii, S., & Yasyukevich, Y. 2020, Changes in the GNSS precise point positioning accuracy during a strong geomagnetic storm, E3S Web of Conferences, 196, Article Number: 01001, pp.1-5. https://doi.org/10.1051/e3sconf/202019601001
  15. Zakharenkova, I. & Cherniak, I. 2021, Effects of storm-induced equatorial plasma bubbles on GPS-based kinematic positioning at equatorial and middle latitudes during the September 7-8, 2017, geomagnetic storm, GPS Solutions, 25, 132. https://doi.org/10.1007/s10291-021-01166-3
  16. Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. 1997, Precise point positioning for the efficient and robust analysis of GPS data from large networks, JGR, 102, 5005-5017. https://doi.org/10.1029/96JB03860