DOI QR코드

DOI QR Code

자동차 가상충돌시험을 위한 고려사항

Considerations for Virtual Vehicle Crash Test

  • 김경진 (경일대학교 스마트디자인공학부) ;
  • 신재호 (경일대학교 스마트디자인공학부) ;
  • 한경희 (경일대학교 스마트디자인공학부)
  • 투고 : 2023.12.17
  • 심사 : 2024.03.23
  • 발행 : 2024.06.30

초록

Computer simulation significantly reduces the high costs associated with actual crash tests and is expanding due to its ability to analyze various test results quantitatively that are difficult to measure in real tests. Research on evaluation technologies is limited according to the finite element analysis, which aims to replace structural verification testing. In this study, considerations for virtual crash tests were derived, and the validity of the zero-energy mode (hourglass mode) was analyzed as part of the considerations for validating the results of vehicle crash simulations. The study reflects on the considerations for virtual crash tests and the variation in hourglass coefficient values affects the occurrence of the hourglass mode. As the hourglass coefficient changes, the maximum hourglass energy reaches over 5% of the maximum internal energy, necessitating a conservative review. A comprehensive study of the maximum hourglass energy is required, considering additional analysis results for various models and collision conditions.

키워드

과제정보

본 연구는 '자율주행기술개발혁신사업, 주행 및 충돌상황 대응 안전성 평가기술 개발'의 연구 결과로서 국토교통부와 국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 RS-2021-KA160637).

참고문헌

  1. Kim, H.Y., Kim, C., Bae, W.B., and Han, S.M., 2007, "Development of optimization technique of warm shrink fitting process for automotive transmission parts (3D FE analysis)," Journal of Materials Processing Technology, Vol. 187~188, pp. 458~462.
  2. Chen, D. Y., Wang, L. M., Wang, C. Z., Yuan, L. K., Zhang, T. Y., and Zhang, Z. Z., 2015, "Finite element based improvement of a light truck design to optimize crashworthiness," International Journal of Automotive Technology, Vol. 16, No. 1, pp. 39~49.
  3. Thacker, J. G., Reagan, S. W., Pellettiere, J. A., Pilkey, W. D., Crandall, J. R., and Sieveka, E. M., 1998, "Experiences During the Development of a Dynamic Crash Response Automobile Model," Finite Elements in Analysis and Design, Vol. 30, No. 4, pp. 279~295.
  4. W. Pawlus, H. R. Karimi, and K. G. Robbersmyr, 2014, "Investigation of vehicle crash modeling techniques: theory and application," The International Journal of Advanced Manufacturing Technology, Vol. 70, No. 5~8, pp. 965~993.
  5. K.H., Han, J.H. Shin, K. J. Kim, Y. M. So, and S. W. Kim, 2021, "Study of Restraint System Computational Model and Occupant Behavior for Vehicle Occupant Protection," Journal of Auto-vehicle Safety Association, Vol. 13, No. 4, pp. 99~105.
  6. M. Mongiardini, M. Ray, R. Grzebieta, M. Bambach, 2013, "Verification and validation of models used in computer simulations of roadside barrier crashes," Proceedings of the 2013 Australasian Road Safety Research, Policing & Education Conference 28th-30th August, Brisbane, Queensland.
  7. American Society of Mechanical Engineers, 2006, "Guide for Verification and Validation in Computational Solid Mechanics," https://www.asme.org/codes-standards/find-codes-standards/v-v-10-standard-verification-validation-computational-solid-mechanics
  8. Federal Aviation Administration, 2003, "Methodology for dynamic seat certification by analysis for use in parts 23, 25, 27 and 29 airplanes and rotorcraft," Advisory Circular No. 20~146.
  9. EN 15227, 2020, "Railway Applications- Crashworthiness Requirements for Railway Vehicles Bodies," https://standards.iteh.ai/atalog/standards/cen/f2ed3935-2f1c-496f-9356-0889a8a1f181/en-15227-2020
  10. NCHRP Report 179, 2010, "Verification and validation of models used in computer simulations of roadside barrier crashes," https://libraryarchives.metro.net/dpgtl/benefit-assessment-districts-program/2010-Procedures-for-verification-and-validation.pdf
  11. NHTSA, Technical Report, 2018, "Vehicle Interior and Restraints Modeling Development of Full Vehicle Finite Element Model Including Vehicle Interior and Occupant Restraints Systems For Occupant Safety Analysis Using THOR Dummies," https://www.nhtsa.gov/sites/nhtsa.gov/files/documents/812545_edagvehicleinteriorandrestraintsmodelingreport.pdf
  12. J. M., Didoszak, Y. S., Shin, and D. H., Lewis, 2003, "Shock Trial Simulation for Naval Ships," Naval Postgraduate School, Monterey, CA, https://roadsafellc.com/NCHRP22-24/Literature/Papers/Metrics/Shock%20Trial%20Simulation%20for%20Naval%20Ships.pdf
  13. NCHRP, 2011, "Recommended Procedures for Verification and Validation of Computer Simulations used for Roadside Safety Applications," INTERIM REPORT.
  14. R. D., Cook, 1995, "Finite Element Modeling for Stress Analysis," John Wiley & Sons, Inc., New York.
  15. J. Shin, K. Kim, K. Han, J. In, H. Chang, S. Shim, and S. Kim, 2022, "Crashworthiness Evaluation of a Hydrogen Bus Fuel System," International Journal of Automotive Technology, 23(5), pp. 1483~1490.
  16. Euro NCAP, 2023, "Virtual Far Side Simulation & Assessment Protocol Implementation 2024, Version 1.0," https://cdn.euroncap.com/media/77243/euro-ncap-vtc-simulation-and-assessment-protocol-v10.pdf.
  17. C. Kiug, M. Schachner, I. Levallois, A. Eggers, U. Lobenwein, J. Galazka, N. Meissner, S. Gargallo, V. Pardede, C. Jimenez, B. Pipkorn, J. Kirch, J. Ellway, and M. Ratingen, 2023, "Euro NCAP Virtual Testing-Crashworthiness," ESV 27th Conference, Yokohama, Japan.
  18. C-NCAP 管理规则, 2024, "附录 I - 主被动离位乘员保护虚拟测评规程 2024 年版".
  19. D. Marzougui, R. R. Samaha, C. Cui, C. D. Kan, and K. S. Opiela, 2012, "Extended Validation of the Finite Element Model for the 2010 Toyota Yaris Passenger Sedan," The National Crash Analysis Center Working Paper, NCAC 2012-W-005.