DOI QR코드

DOI QR Code

Empirical Capacity Degradation Model for a Lithium-Ion Battery Based on Various C-Rate Charging Conditions

  • Dong Hyun Kim (Energy Storage Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Juhyung Lee (Consumer Product Division & Leisure Product Center, Korea Conformity Laboratories(KCL)) ;
  • Kyungseop Shin (Department of Computer Science, Sangmyung University) ;
  • Kwang-Bum Kim (Department of Materials Science and Engineering, Yonsei University) ;
  • Kyung Yoon Chung (Energy Storage Research Center, Korea Institute of Science and Technology (KIST))
  • Received : 2024.02.19
  • Accepted : 2024.04.09
  • Published : 2024.08.31

Abstract

Lithium-ion batteries are widely used in many applications due to their high energy density, high efficiency, and excellent cycle ability. Once an unknown Li-ion battery is reusable, it is important to measure its lifetime and state of health. The most favorable measurement method is the cycle test, which is accurate but time- and capacity-consuming. In this study, instead of a cycle test, we present an empirical model based on the C-rate test to understand the state of health of the battery in a short time. As a result, we show that the partially accelerated charge/discharge condition of the Li-ion battery is highly effective for the degradation of battery capacity, even when half of the charge/discharge conditions are the same. This observation provides a measurable method for predicting battery reuse and future capacity degradation.

Keywords

Acknowledgement

This research was supported by the KIST Institutional Program (Project No. 2E33270) and the National Research Foundation of Korea (NRF-2022M3J1A1054151) funded by the Ministry of Science and ICT.

References

  1. Y. Li, K. Liu, A. M. Foley, A. Zulke, M. Berecibar, E. Nanini-Maury, J. V. Mierlo, and H. E. Hoster, Renew. Sustain. Energy Rev., 2019, 113, 109254.
  2. S. Saxena, D. Roman, V. Robu, D. Flynn, and M. Pecht, Energies, 2021, 14(3), 723.
  3. D. Seruga, A. Gosar, C. A. Sweeney, J. Jaguemont, J. V. Mierlo, and M. Nagode, Energy, 2021, 215, 119079.
  4. S. Son, S. Jeong, E. Kwak, J. Kim, and K.-Y. Oh, Energy, 2022, 238, 121712.
  5. K.-J. Chung and C.-C. Hsiao, Accelerated degradation assessment of 18650 lithium-ion batteries, 2012 International Symposium on Computer, Consumer and Control, Taichung, Taiwan, 2012, 930-933.
  6. K. A. Severson, P. A. Attia, N. Jin, N. Perkins, B. Jiang, Z. Yang, M. H. Chen, M. Aykol, P. K. Herring, D. Fraggedakis, M. Z. Bazant, S. J. Harris, W. C. Chueh, and R. D. Braatz, Nat. Energy, 2019, 4, 383-391.
  7. M. A. Kamali, A. C. Caliwag, and W. Lim, IEEE Embedded Systems Letters, 2021, 13(4), 206-209.
  8. S. Saxena, Y. Xing, D. Kwon, and M. Pecht, Int. J. Electr. Power Energy Syst., 2019, 107, 438-445.
  9. A. Carnovale and X. Li, Energy Ai, 2020, 2, 100032.
  10. M. Varini, P. E. Campana, and G. Lindbergh, J. Energy Storage, 2019, 25, 100819.
  11. N. Yang, Y. Fu, H. Yue, J. Zheng, X. Zhang, C. Yang, and J. Wang, Electrochim. Acta, 2019, 311, 8-20.
  12. J. Park, W. A. Appiah, S. Byun, D. Jin, M.-H. Ryou, and Y. M. Lee, J. Power Sources, 2017, 365, 257-265.
  13. B. Xu, W. Diao, G. Wen, S.-Y. Choe, J. Kim, and M. Pecht, J. Power Sources, 2021, 510, 230390.
  14. C. Zhang, I. Chuckpaiwong, S. Y. Lian, and B. B. Seth, Mech. Syst. Signal Process., 2002, 16(4), 705-718.