DOI QR코드

DOI QR Code

Simulation of Rayleigh wave's acoustoelastic effect in concrete, aluminum and steel

  • Guadalupe Leon (Department of Engineering and Physics, Doane University) ;
  • Hung-Liang (Roger) Chen (Department of Civil and Environmental Engineering, West Virginia University)
  • 투고 : 2023.11.16
  • 심사 : 2024.07.26
  • 발행 : 2024.08.25

초록

In this study, a finite-element surface wave simulation using an effective elastic constant (EEC) was developed to calculate the Rayleigh wave velocity change and polarization change in aluminum, steel, and concrete under uniaxial stress. Under stress, an isotropic medium behaves like an anisotropic material during the wave propagation. The EEC is an equivalent anisotropic stiffness matrix which was derived to simulate the acoustoelastic effect using classical finite-element software. The vertical and horizontal surface displacements located 8-mm from a 1-㎲ excitation load were used to find the acoustoelastic coefficients kv and kp and compared to an analytical scheme. It was found that kv for aluminum and concrete matched within 4% of the analytical solution. The finite-element simulation showed that the Rayleigh wave arrival time for concrete and aluminum was greatly influenced by the stress level. Thus, predicting the stress level using concrete and aluminum's acoustoelastic effect is applicable.

키워드

과제정보

The authors acknowledge the computational resources provided by the WVU Research Computing Thorny Flat HPC cluster, which is funded in part by NSF OAC-1726534. The study was partially supported by Nebraska EPSCoR grant number OIA-2044049 for Guadalupe Leon.

참고문헌

  1. Abbasi, Z. and Ozevin, D. (2016), "Acoustoelastic coefficients in thick steel plates under normal and shear stresses", Exp. Mech., 56(9), 1559-1575. https://doi.org/10.1007/s11340-016-0186-6.
  2. Achenbach, J.D. (1975), Wave Propagation in Elastic Solids, Elsevier Science Publishers B.V., Amsterdam, Netherlands.
  3. Apetre, N., Ruzzene, M., Jacobs, L.J. and Qu, J. (2011), "Measurement of the Rayleigh wave polarization using 1D Laser vibrometry", NDT & E Int., 44(3), 247-253. https://doi.org/10.1016/j.ndteint.2010.07.007.
  4. Aputra, F.D. (2010), "Determination of longitudinal stress in rails", Master of Science, College Station, Texas A&M, Texas.
  5. Berruti, T. and Gola, M.M. (1996), "Acoustoelastic determination of stresses in steel using Rayleigh ultrasonic waves", Materials Science Forum, 210, 171-178. https://doi.org/10.4028/www.scientific.net/MSF.210-213.171
  6. Bonopera, M. and Chang, K.C. (2021), "Novel method for identifying residual prestress force in simply supported concrete girder-bridges", Adv. Struct. Eng., 24(14), 3238-3251. https://doi.org/10.1177/13694332211022067.
  7. Chen, A. and Schumacher, T. (2014), "Estimation of in-situ stresses in concrete members using polarized ultrasonic shear waves", AIP Conf. Proc., 1581(1), 903-908. https://doi.org/10.1063/1.4864917.
  8. Chen, H.L. and Wissawapaisal, K. (2001), "Measurement of tensile forces in a seven-wire prestressing strand using stress waves", J. Eng. Mech., 127(6), 599-606. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:6(599).
  9. Chen, H.L. and Wissawapaisal, K. (2002), "Application of Wigner-Ville transform to evaluate tensile forces in seven-wire prestressing strands", J. Eng. Mech., 128(11), 1206-1214. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1206).
  10. Damljanovic, V. and Weaver, R.L. (2005), "Laser vibrometry technique for measurement of contained stress in railroad rail", J. Sound Vib., 282(1), 341-366. https://doi.org/10.1016/j.jsv.2004.02.055.
  11. Duquennoy, M., Ouaftouh, M., Devos, D., Jenot, F. and Ourak. M. (2008), "Effective elastic constants in acoustoelasticity", Appl. Phys. Lett., 92(24), 244105. https://doi.org/10.1063/1.2945882.
  12. Duquennoy, M., Ouaftouh, M., Ourak, M. and Jenot, F. (2002), "Theoretical determination of Rayleigh wave acoustoelastic coefficients: Comparison with experimental values", Ultrasonic., 39(8), 575-583. https://doi.org/10.1016/S0041-624X(02)00262-7.
  13. Egle, D.M. and Bray, D.E. (1976), "Measurement of acoustoelastic and third-order elastic constants for rail steel", J. Acoust. Soc. Am., 60, 741-744. https://doi.org/10.1121.1.381146 https://doi.org/10.1121.1.381146
  14. Fu Ruili, Mao, R., Yuan, B., Chen, D. and Huo, L. (2022), "Multiresolution of bolt preload monitoring based on the acoustoelastic effect of ultrasonic guided waves", Smart Struct. Syst., 30(5), 513. https://doi.org/10.12989/sss.2022.30.5.513.
  15. Gandhi, N. (2010), "Determination of dispersion curves for acoustoelastic lamb wave propagation", Master of Science, Georgia Institute of Technology, Georgia.
  16. Gokhale, S. (2007), "Determination of applied stresses in rails using the acoustoelastic effect of ultrasonic waves", Master of Science, College Station, Texas A&M. Texas.
  17. He, L. and Kobayashi, S. (2001), "Determination of stress-acoustic coefficients of rayleigh wave by use of laser doppler velocimetry", JSME Int. J. Ser. A Solid Mech. Mater. Eng., 44(1), 17-22. https://doi.org/10.1299/jsmea.44.17.
  18. Hirao, M., Fukuoka, H. and Hori, K. (1981), "Acoustoelastic effect of Rayleigh surface wave in isotropic material", J. Appl. Mech., 48(1), 119-124. https://doi.org/10.1115/1.3157553.
  19. Hu, E., He, Y. and Chen, Y. (2009), "Experimental study on the surface stress measurement with Rayleigh wave detection technique", Appl. Acoust., 70(2), 356-360. https://doi.org/10.1016/j.apacoust.2008.03.002.
  20. Hughes, J.M., Vidler, J., Ng, C.T., Khanna, A., Mohabuth, M. Rose, L.F. and Kotousov, A. (2019), "Comparative evaluation of in situ stress monitoring with Rayleigh waves", Struct. Hlth. Monit., 18(1), 205-215. https://doi.org/10.1177/1475921718798146.
  21. Hurlebaus, S. and Jacobs, L.J. (2006), "Dual-probe laser interferometer for structural health monitoring", J. Acoust. Soc. Am., 119(4), 1923-1925. https://doi.org/10.1121/1.2170442.
  22. Ji, Q., Jian-Bin, L., Fan-Rui, L., Jian-Ting, Z. and Xu, W. (2022), "Stress evaluation in seven-wire strands based on singular value feature of ultrasonic guided waves", Struct. Hlth. Monit., 21(2), 518-533. https://doi.org/10.1177/14759217211005399.
  23. Jiles, D.C. (1995), "Theory of the magnetomechanical effect", J. Phys. D: Appl. Phys., 28(8), 1537-1546. https://doi.org/10.1088/0022-3727/28/8/001.
  24. Junge, M., Qu, J. and Jacobs, L.J. (2006), "Relationship between Rayleigh wave polarization and state of stress", Ultrasonic., 44(3), 233-237. https://doi.org/10.1016/j.ultras.2006.03.004.
  25. Junge, M.D.A. (2003), "Measurement of applied stresses using the polarization of Rayleigh surface waves", Master of Science, Georgia Institute of Technology, Georgia.
  26. Kubrusly, A.C. (2016), "Time Reversal of Acoustoelastic Lamb Waves", Ph.D., Pontificia Universidade Catolica Do Rio De Janeiro, Brazil.
  27. Larose, E. and Hall, S. (2009), "Monitoring stress related velocity variation in concrete with a 2×10-5 relative resolution using diffuse ultrasound", J. Acoust. Soc. Am., 125(4), 1853-1856. https://doi.org/10.1121/1.3079771.
  28. Lillamand, I., Chaix, J.F., Ploix, M.A. and Garnier, V. (2010), "Acoustoelastic effect in concrete material under uni-axial compressive loading", NDT & E Int., 43(8), 655-660. https://doi.org/10.1016/j.ndteint.2010.07.001.
  29. Lu, W.Y., Peng, L.W. and Holland, S. (1998), "Measurement of acoustoelastic effect of Rayleigh surface waves using laser ultrasonics", Rev. Progr. Quant. Nondestr. Eval., 17A, 1643-1648. https://doi.org/10.1007/978-1-4615-5339-7_213
  30. Manchem, L.D., Srinivasan, M.N. and Zhou, J. (2014), "Analytical modeling of residual stress in railroad rails using critically refracted longitudinal ultrasonic waves with COMSOL multiphysics module", ASME International Mechanical Engineering Congress and Exposition, 46583, V009T12A094.
  31. Mohseni H. and Ng, C.T. (2017), "Rayleigh wave for detecting debonding in FRP-retrofitted concrete structures using piezoelectric transducer", Comput. Concrete, 20(5), 583. https://doi.org/10.12989/cac.2017.20.5.583.
  32. Murnaghan, F.D. (1937), "Finite deformations of an elastic solid", Am. J. Math., 59(2), 235-260. https://doi.org/10.2307/2371405.
  33. Ng, C.T., Yeung, C., Yin, T. and Chen, L. (2022), "Stress evaluation of tubular structures using torsional guided wave mixing", Smart Struct. Syst., 30(6), 639. https://doi.org/10.12989/sss.2022.30.6.639.
  34. Payan, C., Garnier, V., Moysan, J. and Johnson, P.A. (2008), "Determination of nonlinear elastic constants and stress monitoring in concrete by coda waves analysis", Proc. Meet. Acoust., 15(4), 519-531. https://doi.org/10.1121/1.3008569.
  35. Peddeti, K. and Santhanam, S. (2018), "Dispersion curves for Lamb wave propagation in prestressed plates using a semi-analytical finite element analysis", J. Acoust. Soc. Am., 143(2), 829-840. https://doi.org/10.1121/1.5023335.
  36. Ramasamy, R., Ibrahim, Z. and Chai, H.K. (2017), "Numerical investigations of internal stresses on carbon steel based on ultrasonic LCR waves", J. Phys.: Conf. Ser., 908, 012044. https://doi.org/10.1088/1742-6596/908/1/012044.
  37. Shin S.W., Lee, J., Kim, J.S. and Shin, J. (2016), "Investigation of influences of mixing parameters on acoustoelastic coefficient of concrete using coda wave interferometry", Smart Struct. Syst., 17(1), 73. https://doi.org/10.12989/sss.2016.17.1.073.
  38. Shokouhi, P., Zoega, A. and Wiggenhauser, H. (2010), "Nondestructive investigation of stress-induced damage in concrete", Adv. Civil Eng., 2010(1), 740189. https://doi.org/10.1155/2010/740189.
  39. Shokouhi, P., Zoega, A., Wiggenhauser, H. and Fischer, G. (2012), "Surface wave velocity-stress relationship in uniaxially loaded concrete", ACI Mater. J., 109(2), 141-148.
  40. Toupin, R.A. and Bernstein, B. (1961), "Sound waves in deformed perfectly elastic materials. Acoustoelastic effect", J. Acoust. Soc. Am., 33(2), 216-225. https://doi.org/10.1121/1.1908623.
  41. Wilson, J.W., Tian, G.Y. and Barrans, S. (2007), "Residual magnetic field sensing for stress measurement", Sensor. Actuat. A: Phys., 135(2), 381-387. https://doi.org/10.1016/j.sna.2006.08.010.
  42. Zhan, H., Jiang, H., Zhuang, C., Zhang, J. and Jiang, R. (2020), "Estimation of stresses in concrete by using coda wave interferometry to establish an acoustoelastic modulus database", Sensor., 20(14), 4031. https://doi.org/10.3390/s20144031.