DOI QR코드

DOI QR Code

Effect of seismic torsional component on nonlinear behavior of reinforced concrete multi-story buildings

  • Abderrahmane Ouazir (Department of Civil Engineering, College of Engineering, University of Ha'il) ;
  • Asma Hadjadj (Department of Interior Design Engineering, College of Engineering, University of Ha'il) ;
  • Mansour Ouazir (Department of Civil Engineering, El.Wanchrissi University) ;
  • Mustapha Boukendakji (Department of Civil Engineering, College of Engineering, University of Ha'il) ;
  • Hatem Gasmi (Department of Civil Engineering, College of Engineering, University of Ha'il)
  • Received : 2023.10.10
  • Accepted : 2024.07.26
  • Published : 2024.08.25

Abstract

This paper investigates the influence of the torsional component of earthquake on the nonlinear structural behavior of reinforced concrete (RC) buildings. It also estimates the equivalent additional eccentricity that results from this component. For this purpose, we generate torsional accelerograms from translational ones and conduct nonlinear seismic analysis on both regular and irregular structures. The results show that the torsional component has a significant impact on the structural response, especially for irregular structures. The equivalent additional eccentricity of the cases studied was higher than 5% which is the value of accidental eccentricity suggested by many seismic codes.

Keywords

Acknowledgement

This research has been funded by Scientific Research Deanship at University of Ha'il-Saudi Arabia through project number <<RG-23 022>>.

References

  1. ACI Committee 318 (2022), Building Code Requirements for Structural Concrete (ACI CODE-318-19(22)).
  2. Anagnostopoulos, S.A., Kyrkos, M.T. and Stathopoulos, K.G. (2015b), "Earthquake induced torsion in buildings: Critical review and state of the art", Earthq. Struct., 8(2), 305-377. https://doi.org/10.12989/eas.2015.8.2.305.
  3. Anagnostopoulos, S.A., Kyrkos, M.T., Papalymperi, A. and Plevri, E. (2015a), "Should accidental eccentricity be eliminated from Eurocode 8?", Earthq. Struct., 8(2), 463-484. https://doi.org/10.12989/eas.2015.8.2.463. 
  4. ASCE (2013), Minimum Design Loads for Buildings and other Structures, American Society of Civil Engineers, USA.
  5. Badaoui, M., Chateauneuf, A., Fournely, E., Bourahla, N. and Bensaibi, M. (2012), "Evaluation of accidental eccentricity for buildings by artificial neural networks", Struct. Eng. Mech, 41(4), 527-538. https://doi.org/10.12989/sem.2012.41.4.527. 
  6. Basu, D., Whittaker, A.S. and Constantinou, M.C. (2012), "Estimating rotational components of ground motion using data recorded at a single station", J. Eng. Mech., 138(9), 1141-1156. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000408. 
  7. Basu, D., Whittaker, A.S. and Constantinou, M.C. (2015), "Characterizing rotational components of earthquake ground motion using a surface distribution method and response of sample structures", Eng. Struct., 99, 685-707. https://doi.org/10.1016/j.engstruct.2015.05.029. 
  8. Debock, D., Hohener, C. and Valley, M. (2019), "Does accidental torsion prevent collapse? How collapse potential is affected by the method of considering accidental torsion", Structure Mag., March. 
  9. Debock, D.J., Liel, A.B., Haselton, C.B., Hooper, J.D. and Henige, R.A. (2014), "Importance of seismic design accidental torsion requirements for building collapse capacity", Earthq. Eng. Struct. Dyn., 43(6), 831-850. https://doi.org/10.1002/eqe.2375. 
  10. De-la-Colina, J., Valdes-Gonzalez, J. and Morones, F.M. (2021), "Accidental torsion within the frame of nonlinear dynamic analysis using code accidental eccentricities and Monte Carlo simulations", Eng. Struct., 248(9), 113196. https://doi.org/10.1016/j.engstruct.2021.113196. 
  11. Eurocode 8 (2005), Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings, European Committee for Standardization, Brussels, Belgium.
  12. Falamarz-Sheikhabadi, M.R. (2014), "Simplified relations for the application of rotational components to seismic design codes", Eng. Struct., 59, 141-152. https://doi.org/10.1016/j.engstruct.2013.10.035. 
  13. Fu, J. and Chen, S. (2022), "Torsion in symmetric buildings due to soil-structure interaction: A discussion on code values of accidental eccentricity factor in seismic design", Earthq. Eng. Struct. Dyn., 51, 3461-3478. https://doi.org/10.1002/eqe.3731. 
  14. Ghayamghamian, M.R., Nouri, G.R., Igel, H. and Tobita T. (2009), "The effects of torsional structural ground motion one responses: Code recommendation for accidental eccentricity", Bull. Seismol. Soc. Am., 99(2B), 1261-1270. https://doi.org/10.1785/0120080196. 
  15. Gholampour, S., Taghipour, R., Felourdi, H.K. and Kutanaei, S.S. (2021), "Investigating the effect of rotational components on the progressive collapse of steel structures", Eng. Fail. Anal., 121, 105094. https://doi.org/10.1016/j.engfailanal.2020.105094. 
  16. Gueguen, P. and Astorga, A. (2021), "The torsional response of civil engineering structures during earthquake from an observational point of view", Sensor., 21(2), 342. https://doi.org/10.3390/s21020342. 
  17. He, C. and Luo, Q. (2012), "Impact of seismic rotational components on symmetric structures", Seismic Behaviour and Design of Irregular and Complex Civil Structures, Dordrecht, Springer Netherlands. https://doi.org/10.1007/978-94-007-5377-8_3.
  18. Kostinakis, K. and Athanatopoulou, A. (2022), "Evaluation of the effectiveness of accidental eccentricity in capturing the effects of irregular masonry infills", Seismic Behaviour and Design of Irregular and Complex Civil Structures IV, Cham, Springer International Publishing. https://doi.org/10.1007/978-3-030-83221-6_10.
  19. Lee, V.W. and Trifunac, M.D. (1985), "Torsional accelerograms", Int. J. Soil Dyn. Earthq. Eng., 4(3), 132-139. https://doi.org/10.1016/0261-7277(85)90007-5. 
  20. Lee, V.W. and Trifunac, M.D. (1987), "Rocking strong earthquake accelerations", Soil Dyn. Earthq. Eng., 6(2), 75-89. https://doi.org/10.1016/0267-7261(87)90017-0. 
  21. Li, H., Sun, L. and Wang, S. (2004), "Improved approach for obtaining rotational components of seismic motion", Nucl. Eng. Des., 232(2), 131-137. https://doi.org/10.1016/j.nucengdes.2004.05.002. 
  22. N.S.Z. 1170.5:2004 (2004), Structural Design Actions, Part 5: Earthquake Actions, New Zealand.
  23. National Building Code of Canada (NBCC) (2005), National Research Council of Canada, Canada.
  24. Nazarov, Y.P., Poznyak, E. and Filimonov, A.V. (2015), "A brief theory and computing of seismic ground rotations for structural analyses", Soil Dyn. Earthq. Eng., 71, 31-41. https://doi.org/10.1016/j.soildyn.2015.01.013. 
  25. Newmark, N.M. (1969), "Torsion in symmetrical buildings", Proceedings of the fourth World Conference one Earthquake Engineering, Santiago, Chile.
  26. Newmark, N.M. (1969), "Torsion in symmetrical buildings", Proceeding of World Conference on Earthquake Engineering, January.
  27. Ouazir, A., Hadjadj, A. and Benanane, A. (2017), "Numerical study on the effects of seismic torsional component on multistory buildings", Earthq. Struct., 13(1), 9-15. https://doi.org/10.12989/eas.2017.13.1.009. 
  28. Ouazir, A., Hadjadj, A., Gasmi, H. and Karoui, H. (2022), "The questionable effectiveness of code accidental eccentricity", Struct. Eng. Mech, 83(1), 45-51. https://doi.org/10.12989/sem.2022.83.1.045. 
  29. Ouazir, K., Benanane, A., Ouazir, A., Ouazir, M. and Hadjadj, A. (2021), "Rocking seismic excitations effect on inelastic response of reinforced concrete building with soft-story", J. Mater. Eng. Struct. «JMES», 8(2), 197-207. 
  30. Perron, V., Hollender, F., Mariscal, A., Theodoulidis, N., Andreou, C., Bard, P.Y., ... & Svay, A. (2018), "Accelerometer, velocimeter dense-array, and rotation sensor datasets from the Sinaps@ postseismic survey (Cephalonia 2014-2015 Aftershock Sequence)", Seismol. Res. Lett., 89(2A), 678-687. https://doi.org/10.1785/0220170125. 
  31. Pnevmatikos, N., Konstandakopoulou, F., Papagiannopoulos, G., Hatzigeorgiou, G. and Papavasileiou, G. (2020), "Influence of earthquake rotational components on the seismic safety of steel structures", Vib., 3(1), 42-50. https://doi.org/10.3390/vibration3010005. 
  32. Shakib, H. and Tohidi, R.Z. (2002), "Evaluation of accidental eccentricity in buildings due to rotational component of earthquake", J. Earthq. Eng., 6(4), 431-445. https://doi.org/10.1080/13632460209350424. 
  33. Sollberger, D., Igel, H., Schmelzbach, C., Edme, P., Van Manen, D.J., Bernauer, F., ... & Robertsson, J.O. (2020), "Seismological processing of six degree-of-freedom ground-motion data", Sensor., 20(23), 6904. https://doi.org/10.3390/s20236904. 
  34. Suryanto, W., Igel, H., Wassermann, J., Cochard, A., Schuberth, B., Vollmer, D. and Velikoseltsev, A. (2006), "First comparison of array-derived rotational ground motions with direct ring laser measurements", Bull. Seismol. Soc. Am., 96(6), 2059-2071. https://doi.org/10.1785/0120060004. 
  35. Vicencio, F. and Alexander, N.A. (2019), "A parametric study on the effect of rotational ground motions on building structural responses", Soil Dyn. Earthq. Eng., 118, 191-206. https://doi.org/10.1016/j.soildyn.2018.12.022. 
  36. Yin, J., Nigbor, R.L., Chen, Q. and Steidl, J. (2016), "Engineering analysis of measured rotational ground motions at GVDA", Soil Dyn. Earthq. Eng., 87, 125-137. https://doi.org/10.1016/j.soildyn.2016.05.007.