DOI QR코드

DOI QR Code

Experimental and analytical research on geopolymer concrete beams reinforced with GFRP bars

  • Suleyman Anil Adakli (Department of Civil Engineering, Adana Alparslan Turkes Science and Technology University) ;
  • Serkan Tokgoz (Department of Civil Engineering, Adana Alparslan Turkes Science and Technology University) ;
  • Sedat Karaahmetli (Department of Civil Engineering, Adana Alparslan Turkes Science and Technology University) ;
  • Cengiz Dundar (Department of Civil Engineering, Toros University)
  • 투고 : 2024.05.21
  • 심사 : 2024.07.23
  • 발행 : 2024.08.25

초록

This paper presents the behavior of geopolymer concrete beams reinforced with glass fiber reinforced polymer (GFRP) bars. In the study, ordinary Portland cement concrete and geopolymer concrete beams having GFRP bars were prepared and tested under four-point loading. The load-deflection diagrams and load capacities of the tested beams were obtained. It was observed that the tested beams exhibited good ductility and significant deflection capacity. The results showed that increasing the tension GFRP reinforcement ratio caused enhancement in the strength capacity of geopolymer concrete beams. In addition, the tested beams were analyzed to obtain the load capacity and the load-deflection responses. The theoretical load-deflection curves and load bearing capacities have been predicted well with the test results. Parametric study has been performed to determine the influences of concrete strength, shear span to depth ratio (a/d) and reinforcement ratio on the behavior of geopolymer concrete beams longitudinally reinforced with GFRP bars. It was concluded that increasing concrete strength led to an increase in load capacity. Besides, the ultimate load increased as the reinforcement ratio increased. On the other hand, increasing a/d ratio reduced the ultimate load value of GFRP reinforced geopolymer concrete beams.

키워드

과제정보

The authors are grateful to Adana Alparslan Turkes Science and Technology University Scientific Research Projects Directorate (Project No. 21303012) for support The authors would like to thank to Ceylan Composite Company for providing GFRP bars.

참고문헌

  1. Abbood, I.S., Odaa, S.A., Hasan, K.F. and Jasim, M.A. (2020), "Properties evaluation of fiber reinforced polymers and their constituent materials used in structures-A review", Mater. Today: Proc., 43(2), 1003-1008. https://doi.org/10.1016/j.matpr.2020.07.636.
  2. Abdelkarim, O.I., Ahmed, E.A., Mohamed, H.M. and Benmokrane, B. (2019), "Flexural strength and serviceability evaluation of concrete beams reinforced with deformed GFRP bars", Eng. Struct., 186, 282-296. https://doi.org/10.1016/j.engstruct.2019.02.024.
  3. Abraham, C.B., Nathan, V.B., Jaipaul, S.R., Nijesh, D., Manoj, M. and Navaneeth, S. (2020), "Basalt fibre reinforced aluminium matrix composites-A review", Mater. Today: Proc., 21, 380-383. https://doi.org/10.1016/j.matpr.2019.06.135.
  4. ACI Committee 440 (2015), Guide for the Design and Construction of Concrete Reinforced with FRP Bars, ACI 440.1R-15, American Concrete Institute, Farmington Hills, MI.
  5. Ahmed, H.Q., Jaf, D.K. and Yaseen, S.A. (2020a), "Flexural capacity and behaviour of geopolymer concrete beams reinforced with glass fibre‑reinforced polymer bars", Int. J. Concrete Struct. Mater., 14, 14. https://doi.org/10.1186/s40069-019-0389-1.
  6. Ahmed, H.Q., Jaf, D.K. and Yaseen, S.A. (2020b), "Flexural strength and failure of geopolymer concrete beams reinforced with carbon fibre-reinforced polymer bars", Constr. Build. Mater., 231, 117185. https://doi.org/10.1016/j.conbuildmat.2019.117185.
  7. Al-Ashmawy, A.M., Shallan, O., Sakr, T.A. and Abd-El-Mottaleb, H.E. (2023), "Numerical investigations of reinforcement concrete beams with different types of FRP bars", Struct. Eng. Mech., 88(6), 599-608. https://doi.org/10.12989/sem.2023.88.6.599.
  8. Ashour, A.F. (2006), "Flexural and shear capacities of concrete beams reinforced with GFRP bars", Constr. Build. Mater., 20, 1005-1015. https://doi:10.1016/j.conbuildmat.2005.06.023.
  9. Barris, C., Torres, L., Comas, J. and Mias, C. (2013), "Cracking and deflections in GFRP RC beams: An experimental study", Compos.: Part B, 55, 580-590. https://doi.org/10.1016/j.compositesb.2013.07.019.
  10. Benmokrane, B., Chaallal, O. and Masmoudi, R. (1996), "Flexural response of concrete beams reinforced with FRP reinforcing bars", ACI Struct. J., 93(1), 46-55. https://doi.org/10.14359/9839.
  11. Davidovits, J. (1994), "Global warming impact on the cement and aggregates industries", World Resour. Rev., 6(2), 263-278.
  12. Duxson, P., Fernandez-Jimenez, A., Provis, J.L., Lukey, G.C., Palomo, A. and van Deventer, J.S.J. (2007), "Geopolymer technology: The current state of the art", Adv. Geopolym. Sci. Technol., 42, 2917-2933. https://doi.org/10.1007/s10853-006-0637-z.
  13. El Refai, A., Abed, F. and Al-Rahmani, A. (2015), "Structural performance and serviceability of concrete beams reinforced with hybrid (GFRP and steel) bars", Constr. Build. Mater., 96, 518-529. https://doi.org/10.1016/j.conbuildmat.2015.08.063.
  14. El-Nemr, A., Ahmed, E.A., El-Safty, A. and Benmokrane, B. (2018), "Evaluation of the flexural strength and serviceability of concrete beams reinforced with different types of GFRP bars", Eng. Struct., 173, 606-619. https://doi.org/10.1016/j.engstruct.2018.06.089.
  15. Hardjito, D. and Rangan, B.V. (2005), "Development and properties of low-calcium fly ash-based geopolymer concrete. Research Report GC", Curtin University of Technology.
  16. Hasan, M.A., Sheehan, T., Ashour, A. and Elkezza, O. (2023), "Flexural behaviour of geopolymer concrete T-Beams reinforced with GFRP bars", Struct., 49, 345-364. https://doi.org/10.1016/j.istruc.2023.01.118.
  17. Hognestad, E., Hanson, N.W. and McHenry, D. (1955), "Concrete stress distribution in ultimate stress design", ACI J., 27, 455-479. https://doi.org/10.14359/11609.
  18. Jnaid, F. and Aboutaha, R. (2013), "Review of design parameters for FRP-RC members detailed according to ACI 440.1R-06", Comput. Concrete, 11(2), 105-121. https://doi.org/10.12989/cac.2013.11.2.105.
  19. Ju, M., Park, C. and Kim, Y. (2017), "Flexural behavior and a modified prediction of deflection of concrete beam reinforced with ribbed GFRP bars", Comput. Concrete, 19(6), 631-639. https://doi.org/10.12989/cac.2017.19.6.631.
  20. Kazemi, M., Madandoust, R., Chastre, C., Esfahani, M.R. and Courard, L. (2021), "Numerical study on the flexural behaviour of normal- and high-strength concrete beams reinforced with GFRP bar, using different amounts of transverse reinforcement", Struct., 34, 3113-3124. https://doi.org/10.1016/j.istruc.2021.09.077.
  21. Khan, M.I., Ram, V.V. and Patel, V.I. (2024), "Influence of pretreatment methods for coarse recycled aggregates on the performance of alkali-activated concrete", Arab. J. Sci. Eng., 49, 5579-5597. https://doi.org/10.1007/s13369-023-08436-x.
  22. Khan, M.I., Ram, V.V. and Patel, V.I. (2024), "Durability performance of alkali-activated concrete with pre-treated coarse recycled aggregates for pavements", Scientif. Report., 14, 13776. https://doi.org/10.1038/s41598-024-64506-6.
  23. Kusbiantoro, A., Nuruddin, M.F., Shafiq, N. and Qazi, S.A. (2012), "The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concrete", Constr. Build. Mater., 36, 695-703. https://doi.org/10.1016/j.conbuildmat.2012.06.064.
  24. Lloyd, N.A. and Rangan, B.V. (2010), "Geopolymer concrete with?fly ash", Second International Conference on Sustainable Construction Materials and Technologies.
  25. Maranan, G.B., Manalo, A.C., Benmokrane, B., Karunasena, W., Mendis, P. and Nguyen, T.Q. (2019), "Flexural behavior of geopolymer-concrete beams longitudinally reinforced with GFRP and steel hybrid reinforcements", Eng. Struct., 182, 141-152. https://doi.org/10.1016/j.engstruct.2018.12.073.
  26. McLellan, B.C., Williams, R.P., Lay, J., Riessen, A. and Corder, G.D. (2011), "Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement", J. Clean. Prod., 19, 1080-1090. https://doi.org/10.1016/j.jclepro.2011.02.010.
  27. Murthy, A.R., Pukazhendhy, D.M., Vishnuvardhan, S., Saravanan, M. and Gandhi, P. (2020), "Performance of concrete beams reinforced with GFRP bars under monotonic loading", Struct., 27, 1274-1288. https://doi.org/10.1016/j.istruc.2020.07.020.
  28. Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O. and Fernandez-Jimenez, A. (2014), "A review on alkaline activation: new analytical perspectives", Materiales de Construccion, 64(315), e022. https://doi.org/10.3989/mc.2014.00314.
  29. Pham, D.Q., Nguyen, T.N., Le, S.T., Pham, T.T. and Ngo, T.D. (2021), "The structural behaviours of steel reinforced geopolymer concrete beams: An experimental and numerical investigation", Struct., 33, 567-580. https://doi.org/10.1016/j.istruc.2021.04.077.
  30. Rangan, B.V., Hardjito, D., Wallah, S.E. and Sumajouw, D.M. (2005), "Studies on fly ash-based geopolymer concrete", Proceedings of the World Congress Geopolymer, Saint Quentin, 28, 133-137.
  31. Rashid, K., Li, X., Xie, Y., Deng, J. and Zhang, F. (2020), "Cracking behavior of geopolymer concrete beams reinforced with steel and fiber reinforced polymer bars under flexural load", Compos. Part B, 186, 107777. https://doi.org/10.1016/j.compositesb.2020.107777.
  32. Sasikumar, P. and Manju, R. (2024), "Flexural behaviour of reinforced concrete beams reinforced with Glass Fibre Reinforced Polymer (GFRP) bars: Experimental and analytical study", Asian J. Civil Eng., 25, 3623-3636. https://doi.org/10.1007/s42107-024-01000-4.
  33. Toutanji, H.A. and Saafi, M. (2000), "Flexural behavior of concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars", ACI Struct. J., 97(5), 712-719. https://doi.org/10.14359/8806.
  34. Unsal, I., Tokgoz, S., Cagatay, I.H. and Dundar, C. (2017), "A study on load-deflection behavior of two-span continuous concrete beams reinforced with GFRP and steel bars", Struct. Eng. Mech., 63(5), 629-637. https://doi.org/10.12989/sem.2017.63.5.629.
  35. Zinkaah, O.H., Alridha, Z. and Alhawat, M. (2022), "Numerical and theoretical analysis of FRP reinforced geopolymer concrete beams", Case Stud. Constr. Mater., 16, e01052. https://doi.org/10.1016/j.cscm.2022.e01052.