DOI QR코드

DOI QR Code

Isolation, Identification and Use of Bacterial Strain Ochrobactrum intermedium PDB-3 for Degradation of the Pesticide Chlorpyrifos

  • Diyorbek Kosimov (Institute of Microbiology of the Academy of Sciences of the Republic of Uzbekistan) ;
  • Lyudmila Zaynitdinova (Institute of Microbiology of the Academy of Sciences of the Republic of Uzbekistan) ;
  • Aziza Mavjudova (Institute of Microbiology of the Academy of Sciences of the Republic of Uzbekistan) ;
  • Muzaffar Muminov (Center for Advanced Technologies under the Ministry of Higher Education, Science and Innovations of Uzbekistan) ;
  • Oybek Shukurov (Institute of Fundamental and Applied Research at the National Research University)
  • 투고 : 2023.12.06
  • 심사 : 2024.02.06
  • 발행 : 2024.03.28

초록

One of the serious modern environmental problems is pollution caused by highly toxic pesticides. Only small amounts of applied pesticides reach their target, and the rest ends up in soil and water. Chlorpyrifos is a toxic, broad-spectrum organophosphate insecticide. In humans, chlorpyrifos inhibits acetylcholinesterase (AChE) in the peripheral and central nervous system, and particularly in children, small amounts of this pesticide cause neurotoxic damage. As the toxic effects of chlorpyrifos and its persistence in the environment require its removal from contaminated sites, it is essential to study the biological diversity of chlorpyrifos-degrading microorganisms. In this study, we sought to determine the chlorpyrifos-degrading ability of the bacterial strain Ochrobactrum intermedium PDB-3. This strain was isolated from soil contaminated with various pesticides and identified as PDB-3 based on morpho-cultural characteristics, MALDI-TOF MS, and 16S rRNA. Studies were conducted for 30 days in sterile soils containing initial concentrations of 50, 75, 100, and 125 mg/kg of chlorpyrifos. To determine the degradation of chlorpyrifos, a liquid culture of the strain was added to the soil at three optical densities: 0, and after 24 and 48 h (OD = 0.03, 0.2 and 0.32). Using GX-MS, we determined that chlorpyrifos was converted to 3,5,6-trichloro-2-pyridinol (TCP). We also found that with increasing optical density, rapid degradation of the initial concentration of chlorpyrifos occurred. Sterile soil without strain PDB-3 was used as a control sample.

키워드

과제정보

We would like to thank the staff of the Institute of Biorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan and the Center for Advanced Technologies for their contribution and assistance to this article.

참고문헌

  1. Tudi M, Daniel RH, Wang L, Lyu J, Sadler R, Connell D, et al. 2021. Agriculture development, pesticide aplication and its impact on the environment. Int. J. Environ. Res. Public Health 18: 1112.
  2. Nicolopoulou SP, Maipas S, Kotampasi C, Stamatis P, Hens L. 2016. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health 4: 148.
  3. Ravindran J, Pankajshan M, Puthur S. 2016. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip. Toxicol. 9: 90-100.
  4. Sikandar IM, Fuad A, Manjunatha PT, Syed AM, Akber ShE, Ram NB, et al. 2020. Organophosphate pesticides: Impact on environment, toxicity, and their degradation. Bioremed. Ind. Waste Environ. Saf. 13: 265-290.
  5. Agnieszka Ch, Iga HI, Inga D, Joanna B, Marcin W, Anna C, et al. 2018. Current research on the safety of pyrethroids used as insecticides. Medicina 54: 61.
  6. Mdeni NL, Adeniji AO, Okoh AI, Okoh OO. 2022. Analytical evaluation of carbamate and organophosphate pesticides in human and environmental matrices: A review. Molecules 27: 618.
  7. Espinoza NO, Ponce LC, Bustos OE. 2017. Organophosphorous pesticides: Their effects on biosentinel species and humans. Control and application in Chile. Int. J. Morphol. 35: 1069-1074.
  8. Ma. Laura OH, Yitzel GM, Maikel FL, Marнa LCG, Sergio E, Efraнn TS, et al. 2021. Transcriptomic analysis of Burkholderia cenocepacia CEIB S5-2 during methyl parathion degradation. Environ. Sci. Pollut. Res. 28: 42414-42431.
  9. Sharma RK, Singh P, Setia A, Sharma AK. 2020. Insecticides and ovarian functions. Environ. Mol. Mutagen. 61: 369-392.
  10. Singh BK, Walker A. 2006. Microbial degradation of organophosphorus compounds. FEMS Microbiol. Rev. 30: 428-471.
  11. Kosimov D, Zaynitdinova L, Jo'rayeva R, Kukanova S, Ergashev R, Mamadrakhimov A, et al. 2021. Possibility of using bacteria-destructors for cypermetrin degradation. JPRI 33: 556-563.
  12. Kuivila KM, Hladik ML, Ingersoll CG, Kemble NE, Moran PW, Calhoun DL, et al. 2012. Occurrence and potential sources of pyrethroid insecticides in stream sediments from seven U.S. metropolitan areas. Environ. Sci. Technol. 46: 4297-4303.
  13. Bordoni L, Nasuti C, Fedeli D, Galeazzi R, Laudadio L, Massaccesi L, et al. 2019. Early impairment of epigenetic pattern in neurodegeneration: additional mechanisms behind pyrethroid toxicity. Exp. Gerontol. 124: 110629.
  14. Siddiqa A, Islam MJ, Rahman MS, Uddin MN, Fancy R. 2016. Assessing toxicity of organophosphorus insecticide on local fish species of Bangladesh. Int. J. Fish Aquat. Stud. 4: 670-676.
  15. Dorneles AL, de Souza RA, Blochtein B. 2017. Toxicity of organophosphorus pesticides to the stingless bees Scaptotrigona bipunctata and Tetragonisca fiebrigi. Apidologie 48: 612-620.
  16. Keith RS, Wayne MW, Donald M, John P, Jeffrey G, John PG. 2014. Properties and uses of chlorpyrifos in the United States. Rev. Environ. Contam. Toxicol. 231: 13-34.
  17. Elizabeth MJ, Edna MV, Krishnasree N, Jisha MS. 2018. In situ bioremediation of chlorpyrifos by Klebsiella sp. isolated from pesticide contaminated agricultural soil. Int. J. Curr. Microbiol. Appl. Sci. 7: 1418-1429.
  18. Sakshi J, Jyoti KB, Ritu S, Khyati Sh. 2017. Bioremediation of chlorpyrifos contaminated soil by microorganism. Int. J. Environ. Agric. Biotechnol. (IJEAB) 2: 1624-1629.
  19. Swarupa P, Kumar A. 2018. Impact of chlorpyrifos on plant growth promoting rhizobacteria isolated from Abelmoschus esculentus. J. Pure Appl. Microbiol. 12: 2149-2157.
  20. Aziz H, Murtaza G, Saleem MH, Ali S, Rizwan M, Riaz U, et al. 2021. Alleviation of chlorpyrifos toxicity in Maize (Zea mays L.) by reducing its uptake and oxidative stress in response to soil-applied compost and biochar amendments. Plants 10: 2170.
  21. Rajmohan K, Chandrasekaran R, Varjani S. 2020. A review on occurrence of pesticides in environment and current technologies for their remediation and management. Indian J. Microbiol. 60: 125-138.
  22. Xue N, Xu X, Jin Z. 2005. Screening 31 endocrine-disrupting pesticides in water and surface sediment samples from Beijing Guanting reservoir. Chemosphere 61: 1594-1606.
  23. Kulkarni AR, Soppimath KS, Dave AM, Mehta MH, Aminabhavi TM. 2000. Solubility study of hazardous pesticide (chlorpyrifos) by gas chromatography. J. Hazard. Mater. 80: 9-13.
  24. Muhammad F, Maqsood A, Amina K, Zahid AB, Qaiser FK, Syed AR, et al. 2021. Biodegradation of chlorpyrifos using isolates from contaminated agricultural soil, its kinetic studies. Sci. Rep. 11: 10320.
  25. Alizadeh R, Rafati L, Ebrahimi AA, Ehrampoush M, Khavidak SS. 2018. Chlorpyrifos bioremediation in the environment: A review article. J. Environ. Health Sustain. Dev. 3: 606-615.
  26. Belal EB, Zidan NA, Mahmoud HA, Eissa FI. 2008. Bioremediation of pesticides-contaminated soils. J. Agric. Res. Kafrelsheikh Univ. 34: 588-608.
  27. Satish GP, Ashokrao DM, Arun SK. 2017. Microbial degradation of pesticide: A review. Afr. J. Microbiol. Res. 11: 992-1012.
  28. Yichen H, Lijuan X, Feiyu L, Mengshi X, Derong L, Xiaomei L, et al. 2018. Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: A Review. Molecules 23: 2313.
  29. Masood A, Irshad A. 2014. Bioremediation of pesticides. towards excellence: An indexed, refereed & peer reviewed journal of higher education chapter. Biotechnology 11: 507-526.
  30. Raffa CM, Chiampo F. 2021. Bioremediation of agricultural soils polluted with pesticides: A Review. Bioengineering 8: 92.
  31. Abraham J, Silambarasan S. 2016. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol using a novel bacterium Ochrobactrum sp. JAS2: A proposal of its metabolic pathway. Pestic. Biochem. Physiol. 126: 13-21.
  32. Ehab REH, Mohamed EIB, Mona EMM, Eman AHM, Youssef MEB. 2013. Biodegradation of chlorpyrifos by a newly isolated Bacillus subtilis strain, Y242. Bioremed. J. 17: 113-123.
  33. Srinivasan P, Selvankumar T, Bilal AP, Muneeb UR, Kamala KS, Govarthanan M, et al. 2020. Chlorpyrifos degradation efciency of Bacillus sp. laccase immobilized on iron magnetic nanoparticles. 3 Biotech. 10: 366.
  34. Atul B, Neelam V. 2018. Proficient biodegradation studies of chlorpyrifos and its metabolite 3,5,6-Trichloro-2-pyridinol by Bacillus subtilis NJ11 strain. Res. J. Microbiol. 13: 53-64.
  35. Fulekar MH, Geetha M. 2008. Bioremediation of chlorpyrifos by Pseudomonas aeruginosa using scale up technique. J. Appl. Biosci. 12: 657-660.
  36. Al-Janabi AOH, Hashim HS. 2021. Efficiency of Pseudomonas putida in bioremediation of chlorpyrifos toxicity. IOP Conf. Ser.: Earth Environ. Sci. 722: 1-12.
  37. de Lillo A, Ashley FP, Palmer RM, Munson MA, Kyriacou L, Weightman AJ, et al. Novel subgingival bacterial phylotypes detected using multiple universal polymerase chain reaction primer sets. Oral Microbiol. Immunol. 21: 61-68.
  38. Domanska M, Hamal K, Jasionowski B, Lomotowski J. 2019. Bacteriological contamination detection in water and WAStewater samples using OD600. Pol. J. Environ. Stud. 28: 4503-4509.
  39. Gangireddygari VSR, Kalva PK, Ntushelo K, Bangeppagari M, Tchatchou AD, Bontha RR. 2017. Influence of environmental factors on biodegradation of quinalphos by Bacillus thuringiensis. Environ. Sci. Eur. 29: 2-11.
  40. Meyers A, Furtmann Ch, Jose J. 2018. Direct optical density determination of bacterial cultures in microplates for high-throughput screening applications. Enzyme Microb. Technol. 118: 1-5.
  41. Velasco J, Romero C, Ignacio LG, Leiva J, Diaz R, Moriyon I. 1998. Evaluation of the relatedness of Brucella spp. and Ochrobactrum anthropi and description of Ochrobactrum intermedium sp. nov., a new species with a closer relationship to Brucella spp. Int. J. Syst. Bacteriol. 48: 759-768.
  42. Oren A, Garrity GM. 2020. List of new names and new combinations previously effectively, but not validly, published. Int. J. Syst. Evol. Microbiol. 70: 4043-4049.
  43. Hordt A, Lopez MG, Meier KJP, Schleuning M, Weinhold LM, Tindall BJ, et al. 2020. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front. Microbiol. 11: 468.
  44. Yadav P, Yadav A, Srivastava JK, Raj A. 2021. Reduction of pollution load of tannery effluent by cell immobilization approach using Ochrobactrum intermedium. J. Water Process Eng. 41: 102059.
  45. Jiang B, Zhang N, Xing Y, Lian L, Chen Y, Zhang D, et al. 2019. Microbial degradation of organophosphorus pesticides: novel degraders, kinetics, functional genes, and genotoxicity assessment. Environ. Sci. Pollut. Res. Int. 26: 21668-21681.
  46. Yu MF, Xia ZZ, Yao JC, Feng Z, Li DH, Liu T, et al. 2021. Functional analysis of the ocnE gene involved in nicotine-degradation pathways in Ochrobactrum intermedium SCUEC4 and its enzymatic properties. Can. J. Microbiol. 67: 138-146.
  47. Attya HE, Roushdy MM, Hassan SE. 2020. Biodeterioration of cypermethrin by local isolate isolated from egyptian petroleum contaminated soil. Az. J. Pharm Sci. 62: 23-38.
  48. Han L, Liu Y, He A, Zhao D. 2014. 16S rRNA gene phylogeny and tfdA gene analysis of 2,4-D-degrading bacteria isolated in China. World J. Microbiol. Biotechnol. 30: 2567-2576.
  49. Nshimiyimana JB, Khadka S, Zou P, Adhikari S, Proshad R, Thapa A, et al. 2020. Study on biodegradation kinetics of di-2-ethylhexyl phthalate by newly isolated halotolerant Ochrobactrum anthropi strain L1-W. BMC Res. Notes 13: 252.
  50. Chen Sh, Liu C, Peng C, Liu H, Hu M, Zhong G. 2012. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLoS One 7: e47205.
  51. Abraham J, Silambarasan S. 2018. Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by fungal consortium isolated from paddy field soil. Environ. Eng. Manag. J. 17: 523-528.
  52. Rai S, Maurya V, Meena S, Srivashtav V, Rani P, Singh J. 2017. Influence of controlling factors on pesticides degradation in soil. Bull. Env. Pharmacol. Life Sci. 6: 435-439.
  53. Damalas CA, Eleftherohorinos I. 2011. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health. 8: 1402-1419.
  54. Muller K, Magesan GN, Bolan NS. 2007. A critical review of the influence of effluent irrigation on the fate of pesticides in soil. Agric. Ecosyst. Enviro. 120: 93-116.
  55. Jebellie SJ, Prasher SO, Clemente RS. 1996. Role of soil moisture content in reducing environmental pollution from pesticides. Can. Water Resour. J. 21: 393-402.
  56. Diez MC. 2010. Biological aspects involved in the degradation of organic pollutants. J. Soil Sci. Plant. Nutr. 10: 244-267.
  57. Liu Y, Qin X, Chen Q, Zhang Q, Yin P, Guo Y. 2020. Effects of moisture and temperature on pesticide stability in corn flour. J. Serb. Chem. Soc. 85: 191-201.
  58. Uniyal Sh, Sharma RK, Kondakal V. 2021. New insights into the biodegradation of chlorpyrifos by a novel bacterial consortium: Process optimization using general factorial experimental design. Ecotoxicol. Environ. Saf. 209: 111799.
  59. Kumar A, Sharma A, Chaudhary P, Gangola S. 2021. Chlorpyrifos degradation using binary fungal strains isolated from industrial waste soil. Biologia 76: 3071-3080.
  60. Fang H, Yu Y, Chu X, Wang X, Yang X, Yu J. 2009. Degradation of chlorpyrifos in laboratory soil and its impact on soil microbial functional diversity. J. Environ. Sci. 21: 380-386.
  61. Ahmad F, Iqbal S, Anwar S, Afzal M, Islam E, Mustafa T, et al. 2012. Enhanced remediation of chlorpyrifos from soil using ryegrass (Lollium multiforum) and chlorpyrifos-degrading bacterium Bacillus pumilus C2A1. J. Hazard. Mater. 237: 110-115.
  62. Farhan M, Ahmad M, Kanwal A, Butt ZA, Khan QF, Raza SA, et al. 2021. Biodegradation of chlorpyrifos using isolates from contaminated agricultural soil, its kinetic studies. Sci. Rep. 11: 10320.
  63. Gilani RA, Rafique M, Rehman A, Munis MFH, Rehman SU, Chaudhary HJ. 2016. Biodegradation of chlorpyrifos by bacterial genus Pseudomonas. J. Basic Microbiol. 56: 105-119.
  64. Arguello G, Alejandra M, Valderrama N, Fredy J, Villa A, Alberto F, et al. 2020. Environmental risk assessment of chlorpyrifos and TCP in aquatic ecosystems. Revista. EIA. 17: 1-16.
  65. Akbar Sh, Sultan S. 2016. Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement. Braz. J. Microbiol. 47: 563-570.