DOI QR코드

DOI QR Code

Synergistic Effect of Essential Oils and Enterocin Produced by Enterococcus faecalis MSW5 against Foodborne Pathogens

  • Mansi Shukla (Department of Microbiology, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Science (ARIBAS)) ;
  • Shilpa Gupte (Department of Microbiology, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Science (ARIBAS))
  • Received : 2023.09.22
  • Accepted : 2024.03.07
  • Published : 2024.03.28

Abstract

This study determines the combinatorial effect of enterocin MSW5 and five essential oils (EOs- Thymus vulgaris, Cymbopogon martini, Origanum vulgare, Cinnamomum zeylanicum, and Cymbopogon citrus) against Staphylococcus aureus, Listeria monocytogenes, and Salmonella Typhimurium. The Minimum Inhibitory Concentration of each antimicrobial agent was determined. The MIC of enterocin MSW5 against test pathogens was in the following order: S. aureus (0.362 ± 0.01), S. Typhimurium (0.362 ± 0.05 mg/ml), L. monocytogenes (0.725 ± 0.08 mg/ml). Among all EOs, maximum activity was observed in the case of C. zeylanicum against S. aureus (78.12 ± 0.04 ppm), S. Typhimurium (78.12 ± 0.08 ppm), and L. monocytogenes (39.00 ± 0.05 ppm). Further, the checkerboard assay was used to determine the synergistic effect between antimicrobial agents and enterocin MSW5 in combination with C. zeylanicum has shown significant synergism with the Fraction Inhibitory Concentration index (0.372) against test pathogens. Additionally, individual EOs and enterocin MSW5 have shown anti-biofilm activity, whereas their combined use has shown more significant antibiofilm activity. The maximum anti-biofilm activity was observed with the combination of enterocin MSW5 and O. vulgares against S. aureus (92.86 ± 0.06%) and S. Typhimurium (73.63 ± 0.23%) and a combination of enterocin MSW5 and C. citrus against L. monocytogenes (87.84 ± 0.15%). Therefore, combinations of antimicrobial compounds can control the growth of foodborne pathogens better than the individual agent.

Keywords

References

  1. Wang X, Biswas S, Paudyal N, Pan H, Li X. 2019. Antibiotic resistance in Salmonella Typhimurium isolates recovered from the food chain through national antimicrobial resistance monitoring system between 1996 and 2016. Front. Microbiol. 10: 985.
  2. Milillo SR, Friedly EC, Saldivar JC, Muthaiyan A, O'Bryan C, Crandall PG, et al. 2012. A review of the ecology, genomics, and stress response of Listeria innocua and Listeria monocytogenes. Crit. Rev. Food Sci. Nutr. 6: 712-725.
  3. Dadkhah H. 2012. Evaluation and comparison of SYBR green I real-time PCR and TaqMan real-time PCR methods for quantitative assay of Listeria monocytogenes in nutrient broth and milk. Afr. J. Microbiol. Res. 6: 1908-1917.
  4. Castellano P, Belfiore C, Fadda S, Vignolo G. 2008. A review of bacteriocinogenic lactic acid bacteria used as bioprotective cultures in fresh meat produced in Argentina. Meat Sci. 79: 483-499.
  5. Iseppi R, Camellini S, Sabia C, Messi P. 2020. Combined antimicrobial use of essential oils and bacteriocin bacLP17 as seafood bio preservative to control Listeria monocytogenes both in planktonic and in sessile forms. Res. Microbiol. 171: 351-356.
  6. Eurosurveillance editorial team. 2012. The European union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2010. Euro Surveill. 17: 20113.
  7. Fetsch A, Johler S. 2018. Staphylococcus aureus as a foodborne pathogen. Curr. Clin. Microbiol. Rep. 5: 88-96.
  8. Bencardino D, Amagliani G, Brandi G. 2021. Carriage of Staphylococcus aureus among food handlers: An ongoing challenge in public health. Food Control 130: 108362.
  9. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M-A, Roy SL, et al. 2011. Foodborne illness acquired in the United States-major pathogens. Emerg. Infect. Dis. 17: 7-15.
  10. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O'Brien SJ, et al. 2010. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 50: 882-889.
  11. Sher AA, Mustafa BE, Grady SC, Gardiner JC, Saeed AM. 2021. Outbreaks of foodborne Salmonella enteritidis in the United States between 1990 and 2015: An analysis of epidemiological and spatial-temporal trends. Int. J. Infect. Dis. 105: 54-61.
  12. Schneider G, Schweitzer B, Steinbach A, Pertics BZ, Cox A, Korosi L. 2021. Antimicrobial efficacy and spectrum of phosphorous-fluorine co-doped tio2 nanoparticles on the foodborne pathogenic bacteria Campylobacter jejuni, Salmonella Typhimurium, E. haemorrhagic, E. coli, Yersinia enterocolitica, Shewanella putrefaciens, Listeria monocytogenes. Foods 10: 1786.
  13. Sharma P, Rashid M, Kaur S. 2020. Novel enterocin E20c purified from Enterococcus hirae 20c synergised with ss-lactams and ciprofloxacin against Salmonella enterica. Microb. Cell Fact. 19: 98.
  14. Hussain MA, Dawson CO. 2013. Economic impact of food safety outbreaks on food businesses. Foods 2: 585-589.
  15. Rocha KR, Perini HF, de Souza CM, Schueler J, Tosoni NF, Furlaneto MC, et al. 2019. Inhibitory effect of bacteriocins from enterococci on developing and preformed biofilms of Listeria monocytogenes, Listeria ivanovii and Listeria innocua. World J. Microbiol. Biotechnol. 35: 96.
  16. Gokoglu N. 2019. Novel natural food preservatives and applications in seafood preservation: a review. J. Sci. Food Agric. 99: 2068-2077.
  17. Bakkali F, Averbeck S, Averbeck D, Idaomar M. 2008. Biological effects of essential oils - A review. Food Chem. Toxicol. 46: 446-475.
  18. Burt S. 2004. Essential oils: Their antibacterial properties and potential applications in foods - A review. Int. J. Food Microbiol. 94: 223-253.
  19. Abdollahzadeh E, Rezaei M, Hosseini H. 2014. Antibacterial activity of plant essential oils and extracts: The role of thyme essential oil, nisin, and their combination to control Listeria monocytogenes inoculated in minced fish meat. Food Control 35: 177-183.
  20. Lacroix M. 2017. The use of essential oils and bacteriocins as natural antimicrobial and antioxidant compounds. Food Glob. Sci. 2: 181-192.
  21. Behravan J, Ramezani M, Hassanzadeh MK, Eskandari M, Kasaian J, Sabeti Z. 2007. Composition, antimycotic and antibacterial activity of Ziziphora clinopodioides Lam. essential oil from Iran. J. Essent. Oil-Bearing Plants 10: 339-345.
  22. Shahbazi Y, Shavisi N, Mohebi E. 2016. Effects of Ziziphora clinopodioides essential oil and Nisin, both separately and in combination, to extend shelf life and control Escherichia coli O157: H7 and Staphylococcus aureus in raw beef patty during refrigerated storage. J. Food Saf. 36: 227-236.
  23. Mizan MFR, Jahid IK, Ha SD. 2015. Microbial biofilms in seafood: A food-hygiene challenge. Food Microbiol. 49: 41-55.
  24. Galie S, Garcia-Gutierrez C, Miguelez EM, Villar CJ, Lombo F. 2018. Biofilms in the food industry: Health aspects and control methods. Front. Microbiol. 9: 898.
  25. Callan K, Westblade LF. 2020. The importance of being specific: Staphylococcus species-specific breakpoints for Methicillin (Oxacillin) resistance. Available from www.clsi.org
  26. Afonso AF, Pereira OR, Fernandes A, Calhelha RC, Silva AMS, Ferreira ICFR, et al. 2019. Phytochemical composition and bioactive effects of Salvia africana, Salvia officinalis 'Icterina' and Salvia mexicana aqueous extracts. Molecules 24: 4327.
  27. Sahin F, Gulluce M, Daferera D, Sokmen A, Sokmen M, Polissiou M, et al. 2004. Biological activities of the essential oils and methanol extract of Origanum vulgare ssp. vulgare in the Eastern Anatolia region of Turkey. Food Control 15: 549-557.
  28. Turgis M, Vu KD, Dupont C, Lacroix M. 2012. Combined antimicrobial effect of essential oils and bacteriocins against foodborne pathogens and food spoilage bacteria. Food Res. Int. 48: 696-702.
  29. Gutierrez J, Barry-Ryan C, Bourke P. 2008. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int. J. Food Microbiol. 124: 91-97.
  30. Sharma G, Dang S, Gupta S, Gabrani R. 2016. Identification and molecular characterization of bacteria having antimicrobial and antibiofilm activity. Int. J. Pharm. Pharm. Sci. 8: 111-114.
  31. Mate J, Periago PM, Palop A. 2016. Combined effect of a nanoemulsion of d-limonene and nisin on Listeria monocytogenes growth and viability in culture media and foods. Food Sci. Technol. Int. 22: 146-152.
  32. CFSAN. Draft Assessment of the Relative Risk to Public Health from Food borne Listeria monocytogenes Among Selected Categories of Ready-to-Eat Foods. 2001. Available at http://www.foodsafety.gov/~dms/lmrisksu.html.
  33. Kumariya R, Garsa AK, Rajput YS, Sood SK, Akhtar N, Patel S. 2019. Bacteriocins: classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb. Pathog. 128: 171-177.
  34. Soltani S, Shakeri A, Iranshahi M, Boozari M. 2021. A review of the phytochemistry and antimicrobial properties of Origanum vulgare l. and subspecies. Iran. J. Pharm. Res. 20: 268-285.
  35. Abdelhamed FM, Abdeltawab NF, ElRakaiby MT, Shamma RN, Moneib NA. 2022. Antibacterial and anti-inflammatory activities of Thymus vulgaris essential oil nanoemulsion on acne vulgaris. Microorganisms 10: 1874.
  36. Vasconcelos NG, Croda J, Simionatto S. 2018. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb. Pathog. 120: 198-203.
  37. Gemeda N, Tadele A, LemmaH, Girma B, AddisG, Tesfaye B, et al. 2018. Development, characterization, and evaluation of novel broad-spectrum antimicrobial topical formulations from Cymbopogon martini(Roxb.)W.Watson essential oil. Evid. Based Complement. Altern. Med. 2018: 9812093.
  38. Subramaniam G, Yew XY, Sivasamugham LA. 2020. Antibacterial activity of Cymbopogon citratus against clinically important bacteria. South African J. Chem. Eng. 34: 26-30.
  39. Mehdizadeh T, Hashemzadeh MS, Nazarizadeh A, Tat M. 2016. Chemical composition and antibacterial properties of Ocimum basilicum, Salvia officinalis and Trachyspermum ammi essential oils alone and in combination with nisin. Res. J. Pharmacogn. 3: 51-58.
  40. Shakoor A, Rehman R, Shehzad MR, Nisar S. 2016. A review of siris properties and therapeutic applications. Int. J. Chem. Biochem. Sci. 10: 74-78.
  41. Wifek M, Saeed A, Rehman R, Nisar S. 2016. Lemongrass?: a review on its botany , properties , applications and active components. IJCBS 9: 79-84.
  42. Qiao X, Du R, Wang Y, Han Y, Zhou Z. 2020. Purification, characterization and mode of action of enterocin, a novel bacteriocin produced by Enterococcus faecium TJUQ1. Int. J. Biol. Macromol. 144: 151-159.
  43. Grande Burgos MJ, Perez Pulido R, Lopez Aguayo MC, Galvez A, Lucas R. 2014. The cyclic antibacterial peptide enterocin AS-48: Isolation, mode of action, and possible food applications. Int. J Mol. Sci. 15: 22706-22727.
  44. Ghrairi T, Hani K. 2015. Enhanced bactericidal effect of enterocin A in combination with thyme essential oils against L. monocytogenes and E. coli O157:H7. J. Food Sci. Technol. 52: 2148-2156.
  45. Cobo A, Abriouel H, Lucas R, Ben N, Valdivia E, Galvez A. 2009. Enhanced bactericidal activity of enterocin AS-48 in combination with essential oils, natural bioactive compounds and chemical preservatives against Listeria monocytogenes in ready-to-eat salad. Food Chem. Toxicol. 47: 2216-2223.
  46. Iseppi R, Camellini S, Zurlini C, Cigognini IM, Cannavacciuolo M, Messi P. 2023. Essential oils and bacteriocin-based active edible coating: An innovative, natural and sustainable approach for the control of Listeria monocytogenes in seafoods. Appl. Sci. 13: 2562.
  47. Gaamouche S, Arakrak A, Bakkali M, Laglaoui A. 2021. Combined antimicrobial effect of bacteriocins of LAB isolated from a traditional brine table olives and essential oils against foodborne pathogens. Moroccan J. Chem. 9: 464-473.
  48. Duraisamy S, Balakrishnan S, Ranjith S, Husain F, Sathyan A. 2020. Bacteriocin - a potential antimicrobial peptide towards disrupting and preventing biofilm formation in the clinical and environmental locales. Environ. Sci. Pollut. Res. 27: 44922-44936.