DOI QR코드

DOI QR Code

Design and comparative analysis of three-phase conventional and E-core stator hybrid reluctance motor for electric three-wheeler

  • M. Karthika (Department of Electrical and Electronics Engineering, Sri Sivasubramaniya Nadar College of Engineering) ;
  • M. Balaji (Department of Electrical and Electronics Engineering, Sri Sivasubramaniya Nadar College of Engineering)
  • Received : 2023.10.24
  • Accepted : 2024.03.06
  • Published : 2024.08.20

Abstract

This paper presents the design and analysis of two distinctive three-phase permanent magnet-embedded switched reluctance motors for electric three wheelers. The configurations used in this work are a 12/8 classic SRM and a 12/10 E-core stator SRM. For the configuration of the 12/10 E-core stator, horizontal alignment of the permanent magnets is introduced, and the magnets are placed on the stator auxiliary poles. In the case of 12/8 SRM, the permanent magnet is placed in the stator yoke. Initially, a dynamic calculation of the vehicle and the SRM design process are carried out to determine the power rating and the optimal design parameters. The motor performance analysis is carried out using finite element-based software with the acquired specifications. The comparative analysis is established by employing various magnet materials with the intention of achieving the same motor torque. Outcomes reveal that the configuration of the permanent magnet embedded in the 12/10 E-core stator SRM is able to generate the needed average torque with minimal cogging torque and torque ripple using low-cost ferrite magnets, making it suitable for electric three-wheeler applications.

Keywords

References

  1. Yan, W., Chen, H., Liao, S., Liu, Y., Cheng, H.: Design of a low-ripple double-modular-stator switched reluctance machine for electric vehicle applications. IEEE Trans. Transp. Electrif. 7(3), 1349-1358 (2021) https://doi.org/10.1109/TTE.2021.3057133
  2. Ding, W., Yang, S., Hu, Y., Li, S., Wang, T., Yin, Z.: Design consideration and evaluation of a 12/8 high-torque modular-stator hybrid excitation switched reluctance machine for EV applications. IEEE Trans. Ind. Electron. 64(12), 9221-9232 (2017) https://doi.org/10.1109/TIE.2017.2711574
  3. Ding, W., Hu, Y., Wu, L.: Analysis and development of novel three-phase hybrid magnetic paths switched reluctance motors using modular and segmental structures for EV applications. IEEE/ASME Trans. Mechatron.Mechatron. 20(5), 2437-2451 (2015) https://doi.org/10.1109/TMECH.2014.2383615
  4. Howey, B., Bilgin, B., Emadi, A.: Design of an external-rotor direct drive E-Bike switched reluctance motor. IEEE Trans. Veh. Technol.Veh. Technol. 69(3), 2552-2562 (2020) https://doi.org/10.1109/TVT.2020.2965943
  5. Jiang, J.W., Bilgin, B., Emadi, A.: Three-phase 24/16 switched reluctance machine for a hybrid electric powertrain. IEEE Trans. Transp. Electrif. 3(1), 76-85 (2017) https://doi.org/10.1109/TTE.2017.2664778
  6. Kondelaji, M.A.J., Farahani, E.F., Mirsalim, M.: Teethed-pole switched reluctance motors assisted with permanent magnets: analysis and evaluation. IEEE Trans. Energy Convers. 36(3), 2131-2140 (2021) https://doi.org/10.1109/TEC.2021.3055739
  7. Masoumi, M., Mirsalim, M.: E-core hybrid reluctance motor with permanent magnets inside stator common poles. IEEE Trans. Energy Convers. 33(2), 826-833 (2018) https://doi.org/10.1109/TEC.2017.2769621
  8. Farahani, E.F., Kondelaji, M.A.J., Mirsalim, M.: An innovative hybrid-excited multi-tooth switched reluctance motor for torque enhancement. IEEE Trans. Ind. Electron. 68(2), 982-992 (2021) https://doi.org/10.1109/TIE.2020.2969073
  9. Wang, H., Liu, T., Li, H.: Comprehensive investigation of an improved two-phase modular PM-assisted switched reluctance motor for enhanced torque performance. IEEE Trans. Energy Convers. 37(2), 1263-1271 (2022)
  10. Ding, W., Bian, H., Song, K., Li, Y., Li, K.: Enhancement of a 12/4 hybrid-excitation switched reluctance machine with both segmented-stator and -rotor. IEEE Trans. Ind. Electron. 68(10), 9229-9241 (2020) https://doi.org/10.1109/TIE.2020.3021665
  11. Eskandari, H., Mirsalim, M.: An improved 9/12 two-phase E-core switched reluctance machine. IEEE Trans. Energy Convers. 28(4), 951-958 (2013) https://doi.org/10.1109/TEC.2013.2279344
  12. Ding, W., Hu, Y., Wang, T., Yang, S.: Comprehensive research of modular E-core stator hybrid-fux switched reluctance motors with segmented and non segmented rotors. IEEE Trans. Energy Convers. 32(1), 382-393 (2017)
  13. Lei, G., Wang, T., Zhu, J., Guo, Y., Wang, S.: System-level design optimization method for electrical drive systems-robust approach. IEEE Trans. Ind. Electron. 62(8), 4702-4713 (2015) https://doi.org/10.1109/TIE.2015.2404305
  14. Sun, X., Xu, N., Yao, M.: Sequential subspace optimization design of a dual three-phase permanent. IEEE Trans. Transp. Electrif. 9(1), 622-630 (2022) https://doi.org/10.1109/TTE.2022.3190536
  15. Jin, Z., Sun, X., Chen, L., Yang, Z.: Robust multi-objective optimization of a 3-pole active magnetic bearing based on combined curves with climbing algorithm. IEEE Trans. Ind. Electron. 69(6), 5491-5501 (2021) https://doi.org/10.1109/TIE.2021.3088380
  16. Liu, A., Da, R., Wang, Y., Ma, S.: Dislocation permanent magnet assisted high speed reluctance motor for improving power density and reducing torque ripple. IEEE Access. 10, 89367-89375 (2022) https://doi.org/10.1109/ACCESS.2022.3201352
  17. Saranya, S., Balaji, M.: Electromagnetic and vibration analysis of e-core switched reluctance motor with permanent magnets and auxiliary windings. J. Power Electron. 19(2), 540-548 (2019) https://doi.org/10.6113/JPE.2019.19.2.540
  18. Sundaramoorthy, P., Mahadevan, B.: Analysis and implementation of two-phase flux reversal free doubly salient machine. J. Magn. 23(3), 350-359 (2018) https://doi.org/10.4283/JMAG.2018.23.3.350
  19. Vijayraghavan, P: Design of Switched Reluctance Motors and Development of a Universal Controller for Switched Reluctance and Permanent Magnet Brushless DC Motor Drives Design of Switched Reluctance Motors and Development of a Universal Controller for Switched Reluctance an. Virginia Polytech. Inst. State Univ. pp. 1-203 (2001)
  20. Karthika, M., Balaji, M., Kamaraj, V: Performance Analysis of SRM Topologies for Electric Three-Wheeler Vehicle Application. In: 2022 IEEE International Conference on Power and Energy: Advancement in Power and Energy Systems towards Sustainable and Resilient Energy Supply, PECon 2022, IEEE, 493-498 (2022)