DOI QR코드

DOI QR Code

Numerical Simulation of Submerged Hydraulic Jump Using k-ω SST Turbulence Model

k-ω SST 난류모형을 이용한 수중도수의 수치모의

  • Choi, Seongwook (Yonsei University)
  • 최성욱 (연세대학교 건설환경공학과)
  • Received : 2024.05.07
  • Accepted : 2024.05.12
  • Published : 2024.06.01

Abstract

In the case of multi-function weirs installed in Korea, the free hydraulic jump or the submerged hydraulic jump is occurred depending on the height of the gate opening and the tailwater level when the sluice gate of the movable weir is partially opened. In this study, the submerged hydraulic jump for the flows under the sluice gate were simulated and the mean flow, turbulence statistics, and relative water depth are investigated using numerical simulation. For numerical simulation, the unsteady Reynolds-averaged Navier-Stokes equation, volume of fluid method, and k-ωSST turbulence model were used. The numerical model was validated using the results of other researchers' previously performed experiments, and it was investigated that the numerical model appropriately simulates the two-phase flow in the hydraulic jump. In addition, the distribution of mean flow, turbulence statistics, and the length of recirculation region was investigated.

우리나라에 설치된 다기능보의 경우 가동보 구간은 수문의 부분 개방 시 수문 개방 높이와 하류의 관리수위에 의해 자유도수 또는 수중도수 형태의 흐름이 발생한다. 본 연구에서는 수문 아래를 지나 흐르며 발생하는 수중도수를 수치모의하고 평균흐름, 난류량, 그리고 상대수심 등에 대하여 분석하였다. 수치모의를 위하여 unsteady Reynolds-averaged Navier-Stokes 방정식과 volume of fluid 기법, 그리고 k-ω SST 난류모형을 이용하였다. 기존에 수행된 다른 연구자들의 실험 결과를 이용하여 수치모형을 검증하여 수치모형이 도수에서 발생하는 이상흐름을 적절히 모의하는 것을 검토하였다. 또한 내부 평균흐름 및 난류량의 분포에 대하여 모의하여 분포 형태에 대해 분석하고, 자유수면과 재순환영역의 길이 등을 분석하였다.

Keywords

References

  1. Hirt, C. W. and Nichols, B. D. (1981). "Volume of fluid(VOF) method for the dynamics of free boundaries." Journal of Computational Physics, Vol. 39, No. 1, pp. 201-225. 
  2. Jasak, H. (2009). "OpenFOAM: Open source CFD in research and industry." International Journal of Naval Architecture and Ocean Engineering, Vol. 1, No. 2, pp. 88-94. 
  3. Javan, M. and Eghbalzadeh, A. (2013). "2D numerical simulation of submerged hydraulic jumps." Applied Mathematical Modelling, Vol. 37, No. 10-11, pp. 6661-6669. 
  4. Jesudhas, V., Roussinova, V., Balachandar, R. and Barron, R. (2017). "Submerged hydraulic jump study using DES." Journal of Hydraulic Engineering, Vol. 143, No. 3, 04016091. 
  5. Long, D., Steffler, P. M. and Rajaratnam, N. (1990). "LDA study of flow structure in submerged hydraulic jump." Journal of Hydraulic Research, Vol. 28, No. 4, pp. 437-460. 
  6. Long, D., Steffler, P. M. and Rajaratnam, N. (1991). "A numerical study of submerged hydraulic jumps." Journal of Hydraulic Research, Vol. 29, No. 3, pp. 293-308. 
  7. Ma, F., Hou, Y. and Prinos, P. (2001). "Numerical calculation of submerged hydraulic jumps." Journal of Hydraulic Research, Vol. 39, No. 5, pp. 493-503. 
  8. Menter, F. R. (1992). "Improved two-equation k-omega turbulence models for aerodynamic flows." NASA Ames Research Center, Moffett Field, CA.
  9. Nasrabadi, M., Mehri, Y., Ghassemi, A. and Omid, M. H. (2021). "Predicting submerged hydraulic jump characteristics using machine learning methods." Water Supply, Vol. 21, No. 8, pp. 4180-4194. 
  10. Rajaratnam, N. (1965). "The hydraulic jump as a well jet." Journal of the Hydraulics Division, Vol. 91, No. 5, pp. 107-132. 
  11. Van Leer, B. (1974). "Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme." Journal of Computational Physics, Vol. 14, No. 4, pp. 361-370. 
  12. Wu, S. and Rajaratnam, N. (1995). "Free jumps, submerged jumps and wall jets." Journal of Hydraulic Research, Vol. 33, No. 2, pp. 197-212.