DOI QR코드

DOI QR Code

Application of the Modified Bartlett-Lewis Rectangular Pulse Model for Daily Precipitation Simulation in Gamcheon Basin

감천유역의 일 강수량 모의를 위한 MBLRP 모형의 적용

  • 정연지 (경기대학교 토목공학과) ;
  • 김민기 (경기대학교 토목공학과) ;
  • 엄명진 (경기대학교 사회에너지시스템공학과)
  • Received : 2023.12.21
  • Accepted : 2024.02.04
  • Published : 2024.06.01

Abstract

Precipitation data are an integral part of water management planning, especially the design of hydroelectric structures and the study of floods and droughts. However, it is difficult to obtain accurate data due to space-time constraints. The recent increase in hydrological variability due to climate change has further emphasized the importance of precipitation simulation techniques. Therefore, in this study, the Modified Bartlett-Lewis Rectangular Pulse model was utilized to apply the parameters necessary to predict daily precipitation. The effect of this parameter on the daily precipitation prediction was analyzed by applying exponential distribution, Gamma distribution, and Weibull distribution to evaluate the suitability of daily precipitation prediction according to each distribution type. As a result, it is judged that parameters should be selected in consideration of regional and seasonal characteristics when simulating precipitation using the MBLRP model.

강수 자료는 물 관리 계획, 특히 수공 구조물 설계와 홍수 및 가뭄 연구에 필수적인 요소이다. 하지만 시공간적 제약으로 인해 정확한 데이터를 얻기 어려운 현실이다. 최근 기후 변화로 인한 수문학적 변동성이 증가하면서, 강수량 모의 기법의 중요성이 더욱 강조되고 있다. 이에 본 연구에서는 Modified Bartlett-Lewis Rectangular Pulse 모델을 활용하여 일 강수량을 예측하는 데 필요한 매개변수를 적용하였다. 지수 분포, Gamma 분포, 그리고 Weibull 분포를 적용하여, 이 매개변수들이 일 강수량 예측에 미치는 영향을 분석하고, 각각의 분포 유형에 따른 일 강수량 예측의 적합성을 평가하였다. 그 결과, MBLRP 모형을 이용한 강수량 모의 시, 지역 및 계절 특성을 고려하여 매개변수를 선정해야 하는 것으로 판단된다.

Keywords

Acknowledgement

This work was supported by Kyonggi University's Graduate Research Assistantship 2024 and this work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (No. NRF-2022R1A2C2004034).

References

  1. Ahn, K. H., Cho, W. H. and Han, G. Y. (2009). "Identification and interpretation of factors affecting rainfall patterns in the Gamcheon Basin." Journal of the Korean Society for Hazard Mitigation, KOSHAM, Vol. 9, No. 2, pp. 77-86. 
  2. Cross, D., Onof, C., Winter, H. and Bernardara, P. (2018). "Censored rainfall modelling for estimation of fine-scale extremes." Hydrology and Earth System Sciences, EGU, Vol. 22, No. 1, pp. 727-756, https://doi.org/10.5194/hess-22-727-2018. 
  3. Entekhabi, D., Rodriguez-Iturbe, I. and Eagleson, P. S. (1989). "Probabilistic representation of the temporal rainfall process by a modified Neyman-Scott Rectangular Pulses Model: Parameter estimation and validation." Water Resources Research, AGU, Vol. 25, No. 2, pp. 295-302, https://doi.org/10.1029/WR025i002p00295. 
  4. Haan, C. T., Allen, D. M. and Street, J. O. (1976). "A Markov chain model of daily rainfall." Water Resources Research, AGU, Vol. 12, No. 3, pp. 443-449, https://doi.org/10.1029/WR012i003p00443. 
  5. Han, G. Y., Cho, W. H., Kim, J. E. and Lee, J. Y. (2009). "Establishment of flood interpretation techniques through runoff analysis in the Gamcheon Basin." Proceedings of Korean Society for Hazard Mitigation Conference, KOSHAM, Seoul, Korea, pp. 151 (in Korean). 
  6. Islam, S., Entekhabi, D., Bras, R. L. and Rodriguez-Iturbe, I. (1990). "Parameter estimation and sensitivity analysis for the modified Bartlett-Lewis rectangular pulses model of rainfall." Journal of Geophysical Research: Atmospheres, AGU, Vol. 95, No. D3, pp. 2093-2100, https://doi.org/10.1029/JD095iD03p02093. 
  7. Kim, J., Kwon, H. H. and Kim, D. G. (2014). "A development of hourly rainfall simulation technique based on Bayesian MBLRP model." KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 34, No. 3, pp. 821-831, https://doi.org/10.12652/Ksce.2014.34.3.0821 (in Korean). 
  8. Kim, D., Kwon, H.-H., Lee, S.-O. and Kim, S. (2016). "Regionalization of the Modified Bartlett-Lewis rectangular pulse stochastic rainfall model across the Korean Peninsula." Journal of Hydro-environment Research, Elsevier, Vol. 11, pp. 123-137, https://doi.org/10.1016/j.jher.2014.10.004. 
  9. Kim, D. K., Shin, J. Y., Lee, S. O. and Kim, T. W. (2013). "The application of the poisson cluster rainfall generation model to the flood analysis." Journal of Korea Water Resources Association, KWRA, Vol. 46, No. 5, pp. 439-447, https://doi.org/10.3741/JKWRA.2013.46.5.439 (in Korean). 
  10. Koutsoyiannis, D. and Onof, C. (2001). "Rainfall disaggregation using adjusting procedures on a Poisson cluster model." Journal of Hydrology, Elsevier, Vol. 246, Nos. 1-4, pp. 109-122, https://doi.org/10.1016/S0022-1694(01)00363-8. 
  11. Morbidelli, R., Saltalippi, C., Dari, J. and Flammini, A. (2021). "A review on rainfall data resolution and its role in the hydrological practice." Water, MDPI, Vol. 13, No. 8, 1012, https://doi.org/10.3390/w13081012. 
  12. Neyman, J. and Scott, E. L. (1958). "Statistical approach to problem of cosmology." Journal of the Royal Statistical Society Series B, Oxford University Press, Vol. 20, No. 1, pp. 1-29, https://doi.org/10.1111/j.2517-6161.1958.tb00272.x. 
  13. Onof, C., Chandler, R. E., Kakou, A., Northrop, P., Wheater, H. S. and Isham, V. (2000). "Rainfall modelling using Poisson- cluster processes: a review of developments." Stochastic Environmental Research and Risk Assessment, Springer, Vol. 14, No. 6, pp. 384-411, https://doi.org/10.1007/s004770000043. 
  14. Onof, C. and Wheater, H. S. (1994). "Improvements to the modelling of British rainfall using a modified random parameter Bartlett Lewis rectangular pulse model." Journal of Hydrology, Elsevier, Vol. 157, Nos. 1-4, pp. 177-195, https://doi.org/10.1016/0022-1694(94)90104-X. 
  15. Rodriguez-Iturbe, I., Cox, D. R. and Isham, V. (1987). "Some models for rainfall based on stochastic point processes." Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Royal Society, Vol. 410, No. 1839, pp. 269-288, https://doi.org/10.1098/rspa.1987.0039. 
  16. Rodriguez-Iturbe, I., Cox, D. R. and Isham, V. (1988). "A point process model for rainfall: further developments." Proceedings of the Royal Society of London A. Mathematical and Physical Sciences, Royal Society, Vol. 417, pp. 283-298, https://doi.org/10.1098/rspa.1988.0061. 
  17. Rodriguez-Iturbe, I., Gupta, V. K. and Waymire, E. (1984). "Scale considerations in the modeling of temporal rainfall." Water Resources Research, AGU, Vol. 20, No. 11, pp. 1611-1619, https://doi.org/10.1029/WR020i011p01611. 
  18. Vanhoutte, E. K., Faber, C. G., van Nes, S. I., Jacobs, B. C., van Doorn, P. A., van Koningsvel, R., Cornblath, D. R., van der Kooi, A. J., Cats, E. A., van den Berg, L. H., Notermans, N. C., van der Beek, Gorson, K. C., Eurelings, M., Engelsman, J., Boot, H., Meijer, R. J., Lauria, G., Tennant, A. and Merkies, I. S. J. (2012). "Modifying the Medical Research Council grading system through Rasch analyses." Brain, Guarantors of Brain, Vol. 135, No. 5, pp. 1639-1649, https://doi.org/10.1093/brain/awr318. 
  19. Velghe, T., Troch, P. A., De Troch, F. P. and Van de Velde, J. (1994). "Evaluation of cluster-based rectangular pulses point process models for rainfall." Water Resources Research, AGU, Vol. 30, No. 10, pp. 2847-2857, https://doi.org/10.1029/94WR01496. 
  20. Verhoest, N., Troch, P. A. and De Troch, F. P. (1997). "On the applicability of Bartlett-Lewis rectangular pulses models in the modeling of design storms at a point." Journal of Hydrology, Elsevier, Vol. 202, Nos. 1-4, pp. 108-120, https://doi.org/10.1016/S0022-1694(97)00060-7. 
  21. Yusop, Z., Nasir, H. and Yusof, F. (2014). "Disaggregation of daily rainfall data using Bartlett Lewis Rectangular Pulse model: a case study in central Peninsular Malaysia." Environmental Earth Sciences, Springer, Vol. 71, pp. 3627-3640, https://doi.org/10.1007/s12665-013-2755-7.