DOI QR코드

DOI QR Code

Probabilistic Safety Assessment of Offsite Power System Under Typhoon-induced High Wind

소외전력망의 태풍 동반 강풍 확률론적 안전성 평가

  • 김건규 (경북대학교 융복합시스템공학과) ;
  • 곽신영 (국립한밭대학교 건설환경공학과) ;
  • 임승현 (경북대학교 융복합시스템공학과) ;
  • 진승섭 (세종대학교 건설환경공학과)
  • Received : 2023.12.07
  • Accepted : 2024.01.28
  • Published : 2024.06.01

Abstract

Recently, the intensity and frequency of typhoons have been increasing due to climate change, and typhoons can cause a loss of offsite power (LOOP) at nuclear power plants (NPPs). Therefore, it is necessary to prepare for typhoon-induced high winds through the probabilistic safety assessment (PSA) of offsite power systems. However, research on PSA for offsite power system in NPPs under typhoon-induced high winds is still lacking. In this study, PSA was performed for offsite power systems subjected to typhoon-induced high winds at the Kori NPP site, which has experienced frequent damages to its offsite power system among NPP sites in Korea. In order to perform PSA for typhoon-induced high winds in offsite power systems, the typhoon hazard at Kori NPP site was derived using logic tree and Monte Carlo simulation. Utilizing the fragility of components constituting the power system, performed a fragility analysis of the power system. Lastly, the probability that offsite power system will not be able to supply power to the NPP was derived.

최근 기후변화로 인해 태풍의 강도와 빈도가 증가하고 있으며, 태풍은 원자력발전소의 소외전원상실(LOOP)을 발생시킬 수 있다. 따라서, 태풍 동반 강풍에 대한 소외전력망의 확률론적 안전성 평가(PSA)를 통한 대비가 필요하다. 하지만, 원자력발전소의 소외전력망에 대한 태풍 동반 강풍 PSA 연구는 미흡한 실정이다. 본 연구에서는 국내원전부지 중 소외전력망의 피해가 잦았던 고리원전부지를 대상으로 소외전력망의 태풍 동반 강풍에 의한 PSA를 수행하였다. 태풍 동반 강풍에 의한 소외전력망의 PSA를 수행하기 위해 고리원전부지의 태풍재해도를 Logic Tree와 Monte Carlo Simulation을 활용하여 도출하였다. 전력망을 구성하는 요소의 취약도를 활용하여 전력망의 취약도 분석을 수행하였다. 최종적으로 소외전력망이 원자력발전소에 전력을 공급하지 못할 확률을 정량적으로 분석하였다.

Keywords

Acknowledgement

This work was partly supported by Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government(MOTIE)(No. 20224B10200050) and National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT) (No. RS-2022-00154571). This paper has been written by modifying and supplementing the KSCE 2023 CONVENTION paper.

References

  1. An, L., Wu, J., Zhang, Z. and Zhang, R. (2018). "Failure analysis of a lattice transmission tower collapse due to the super typhoon Rammasun in July 2014 in Hainan Province, China." Journal of Wind Engineering and Industrial Aerodynamics, Elsevier, Vol. 182, pp. 295-307, https://doi.org/10.1016/j.jweia.2018.10.005.
  2. Choun, Y. S. and Kim, M. K. (2019). "Logic tree approach for probabilistic typhoon wind hazard assessment." Nuclear Engineering and Technology, Korean Nuclear Society, Vol. 51, No. 2, pp. 607-617, https://doi.org/10.1016/j.net.2018.11.006.
  3. Eem, S. H., Kwag, S. Y. and Hahm, D. G. (2023). "Development of network safety assessment methodology for loss of off-site power system." Proceedings of Transactions of the Korean Nuclear Society Spring Meeting, Korea Nuclear Society, Jeju, Korea.
  4. Hansen, T. (2007). "Surviving a hurricane." Power Engineering, PennWell Publishing Corp., Vol. 111, No. 6, pp. 10-12.
  5. Holland, G. J. (1980). "An analytic model of the wind and pressure profiles in hurricanes." Monthly Weather Review, AMS, Vol. 108, No. 8, pp. 1212-1218, https://doi.org/10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2.
  6. Kancev, D., Causevski, A., Cepin, M. and Volkanovski, A. (2007). "Application of probabilistic safety assessment for macedonian electric power system." Proceedings of International Conference Nuvlear Engergy for New Europe 2007, Nuclear Society of Slovenia, Ljubljana.
  7. Kim, M. K. (2017). "Safety of nuclear power plant according to the 912 gyeongju earthquake in 2016." KSCE Magazine, KSCE, Vol. 65, No. 4, pp. 31-35 (in Korean).
  8. Kim, N. W., Lee, J. W., Joo, G. H. and Kim, S. H. (2020). "Korean Climate Change Assessment Report 2020 (The scientific basis for climate change)." Korea Meteorological Administration (in Korean).
  9. Kopytko, N. and Perkins, J. (2011). "Climate change, nuclear power, and the adaptation-mitigation dilemma." Energy Policy, Elsevier, Vol. 39, No. 1, pp. 318-333, https://doi.org/10.1016/j.enpol.2010.09.046.
  10. Korea Electric Power Corporation (KEPCO) (2013). For over haed transmission tower design standard, DS-1111 (in Korean).
  11. Korea Institute of Nuclear Safety (KINS) (2023). Safety information by sector, Available at: https://nsic.nssc.go.kr/information/reguDataActive.do?nsicDtaTyCode=nppAccient (Accessed: August 20, 2023) (in Korean).
  12. Oliva, J. J. R. (2019). "The application of probabilistic safety assessment to electric transmission systems." Ingenieria Energetica, Vol. 40, No. 1, pp. 63-72.
  13. Powell, M., Soukup, G., Cocke, S., Gulati, S., Morisseau-Leroy, N., Hamid, S., Dorst, N. and Axe, L. (2005). "State of florida hurricane loss projection model: Atmospheric science component." Journal of Wind Engineering and Industrial Aerodynamics, Elsevier, Vol. 93, No. 8, pp. 651-674, https://doi.org/10.1016/j.jweia.2005.05.008.
  14. Ravindra, M. K. (1993). "State-of-the-art and current research activities in extreme winds relating to design and evaluation of nuclear power plants." The Tornado: Its structure, Dynamics, Prediction, and Hazards, AGU, Vol. 79, pp. 389-397, https://doi.org/10.1029/GM079p0389.
  15. Salman, A. M. and Li, Y. (2017). "A probabilistic framework for seismic risk assessment of electric power systems." Procedia Engineering, Elsevier, Vol. 199, pp. 1187-1192, https://doi.org/10.1016/j.proeng.2017.09.324.
  16. US Nuclear Regulatory Commission (US NCR) (2011). Design-basis hurricane and hurricane missiles for nuclear power plants, regulatory guide 1.221, NRC, USA.
  17. Vickery, P. J., Skerlj, P. F. and Twisdale, L. A. (2000). "Simulation of hurricane risk in the US using empirical track model." Journal of Structural Engineering, ASCE, Vol. 126, No. 10, pp. 1222-1237, https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1222).
  18. Vickery, P. J. and Twisdale, L. A. (1995). "Wind-field and filling models for hurricane wind-speed predictions." Journal of Structural Engineering, ASCE, Vol. 121, No. 11, pp. 1700-1709, https://doi.org/10.1061/(ASCE)0733-9445(1995)121:11(1700).
  19. Wang, H., Liang, X., Zhang, X. and Feng, B. (2020). "Study on high wind hazard probability risk assessment methods of nuclear power plant." IOP Conference Series: Earth and Environmental Science, Vol. 467, No. 1, 012075, https://doi.org/10.1088/1755-1315/467/1/012075.
  20. Zhang, J. and Xie, Q. (2019). "Failure analysis of transmission tower subjected to strong wind load." Journal of Constructional Steel Research, Elsevier, Vol. 160, pp. 271-279, https://doi.org/10.1016/j.jcsr.2019.05.041.