DOI QR코드

DOI QR Code

Research on Preventing Deformation of Oil Pipelines in High-temperature and High-pressure Environments Through Finite Element Analysis

유한요소해석을 통한 고온 고압 환경내의 송유관 변형방지 연구

  • Received : 2024.01.31
  • Accepted : 2024.02.19
  • Published : 2024.06.01

Abstract

Traditional oil, a depleting resource, accounts for only one-third of the world's oil reserves, so research and cases of utilizing non-traditional oil as a resource are continuously increasing. However, unconventional oil contains bitumen containing solid particles such as sand, and because it is exposed to a high temperature and high pressure environment, deformation can frequently occur in oil pipelines. Therefore, variables such as material, thickness, and angle that can affect the deformation of the oil pipeline were derived and applied to the oil pipeline, and finite element analysis was performed using the Ansys program. As a result of finite element analysis, deformation and maximum load capacity were derived. Afterwards, the same analysis was performed by modeling an optimized oil pipeline by combining the factors with the best deformation resistance and maximum load capacity. As a result of the analysis, the effect of reducing deformation and increasing the maximum load capacity by about 30 % was confirmed, and factors for suppressing deformation when analyzing oil pipelines were derived.

고갈되고 있는 자원인 전통 석유는 전세계 석유매장량의 3분의 1에 불과하여 비전통 오일을 자원으로 활용하고자 하는 연구와 사례가 지속적으로 증가하고 있다. 하지만 비전통 오일에는 모래와 같은 고체입자가 포함된 역청이 함유되어 있으며 고온 고압의 환경에 노출되기 때문에 송유관에 변형이 빈번히 발생할 수 있다. 따라서 송유관의 변형에 영향을 끼칠 수 있는 재료, 두께, 각도 등의 변수를 도출하여 송유관에 적용하고 Ansys 프로그램을 통해 유한요소해석을 진행하였다. 유한요소해석의 결과로 변형, 최대하중 용량을 도출하였다. 이후 변형 저항과 최대하중 용량이 가장 우수한 인자를 조합하여 최적화된 송유관을 모델링하여 동일한 해석을 진행하였다. 해석 결과 변형을 감소시키며 30 % 가량 최대하중 용량을 증진시키는 효과를 확인하였고 송유관 해석 시 변형억제를 위한 인자들을 도출하였다.

Keywords

Acknowledgement

This work is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant RS-2022-00143541).

References

  1. Ansys Workbench. (2022). Ansys Inc. Canonsburg, Pennsylvania, USA.
  2. Ariyaratne, W. H., Ratnayake, C. and Melaaen, M. C. (2019). "CFD modeling of dilute phase pneumatic conveying in a horizontal pipe using Euler-Euler approach." Particulate Science and Technology, Vol. 37, No. 8, pp. 1015-1023, https://doi.org/10.1080/02726351.2018.1435595.
  3. ASME B36.10M-2015 (2015). Welded and Seamless Wrought Steel Pipe (B36.10M - 2015). The American Society of Mechanical Engineers(ASME), New York, USA.
  4. Balan, R. and Kaliveeran, V. (2023). Thermal buckling of steel tube using finite element method. Materials Today: Proceedings.
  5. Dong, X., Liu, H., Chen, Z., Wu, K., Lu, N. and Zhang, Q. (2019). "Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection." Applied Energy, Vol. 239, pp. 1190-1211, https://doi.org/10.1016/j.apenergy.2019.01.244.
  6. Lopez, D., Congote, J. P., Cano, J. R., Toro, A. and Tschiptschin, A. P. (2005). "Effect of particle velocity and impact angle on the corrosion-erosion of AISI 304 and AISI 420 stainless steels." Wear, Vol. 259, No. 1-6, pp. 118-124.
  7. Lv, L. W. (2014). "Thermal analysis module of ANSYS." Advanced Materials Research, Vol. 1030, pp. 653-656, https://doi.org/10.4028/www.scientific.net/AMR.1030-1032.653.
  8. Mao, S., Liu, W., Zhou, T., Xue, C. and Wei, D. (2023). "Steady-state and transient thermal-hydraulic analysis for high temperature heat pipe cooled reactors." Nuclear Engineering and Design, Vol. 412, 112479, https://doi.org/10.1016/j.nucengdes.2023.112479.
  9. Peng, W. and Cao, X. (2016). "Numerical prediction of erosion distributions and solid particle trajectories in elbows for gas-solid flow." Journal of Natural Gas Science and Engineering, Vol. 30, pp. 455-470, https://doi.org/10.1016/j.jngse.2016.02.008.
  10. Pereira, F. A. R., Ataide, C. H. and Barrozo, M. A. S. (2010). "CFD Approach using a discrete phase model for annular flow analysis." Latin American Applied Research, Vol. 40, No. 1, pp. 53-60.
  11. Polenta, V., Garvey, S. D., Chronopoulos, D., Long, A. C. and Morvan, H. P. (2015). "Effects of pipe curvature and internal pressure on stiffness and buckling phenomenon of circular thin-walled pipes." International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering, Vol. 9, No. 2, pp. 278-282.
  12. Sah, I., Park, J. and Kim, E. S. (2023). "Fatigue life curves of alloy 617 in the temperature range of 800-950℃." Nuclear Engineering and Technology, Vol. 55, No. 2, pp. 546-554, https://doi.org/10.1016/j.net.2022.09.027.
  13. Wiseman, P. E. and Barkey, M. E. (2019). "A study of buckling analyses of piping structures." International Journal of Pressure Vessels and Piping, Vol. 172, pp. 10-16, https://doi.org/10.1016/j.ijpvp.2019.02.020.