DOI QR코드

DOI QR Code

현장시험을 통한 항만 구역 내 블록 포장의 침하 특성 분석

Analysis of Settlement Characteristics of Block Pavement in Port Through Field Tests

  • 하용수 (한국해양과학기술원 해양ICT.모빌리티연구부) ;
  • 김윤태 (부경대학교 해양공학과) ;
  • 오명학 (한국해양과학기술원 해양ICT.모빌리티연구부)
  • Ha, Yong-Soo (Korean Institute of Ocean Science and Technology) ;
  • Kim, Yun-Tae (Pukyong National University.Ocean engineering Department) ;
  • Oh, Myounghak (Korean Institute of Ocean Science and Technology)
  • 투고 : 2023.12.27
  • 심사 : 2024.01.18
  • 발행 : 2024.04.01

초록

항만은 노상 하부가 연약지반으로 구성되어 있으며, 빈번한 중하중 장비 운행에 따라 부등 침하, 균열 등의 포장 피해가 흔히 발생한다. 본 연구에서는 항만 콘크리트 블록을 개발하여 2가지로 구분되는 포장 단면으로 ◯◯항에 블록 포장을 시공하였으며, 포장체 성능 및 포장 표면에서 나타나는 침하 특성을 분석하였다. 포장체 성능을 분석하기 위하여 3회의 FWD 시험이 수행되었으며, 시간의 흐름에 따른 침하 특성을 분석하기 위하여 3회의 LiDAR 계측을 수행하였다. 시멘트 처리기층 단면의 블록 포장에 대해 시공 7개월 이후 수행된 FWD 시험에서 아스팔트 포장보다 더 낮은 처짐이 발생하여 상대 처짐비가 1보다 적게 나타났다. 이는 항만 운영에 따른 하부지반 안정화로 인해 블록 포장의 지지력이 향상되었기 때문이라고 판단된다. 전체 포장 단면의 침하 특성을 분석하기 위해 수행된 LiDAR 계측에서는 시공 초기 중장비 등의 상재하중으로 인해 쇄석기층 내 다수의 침하 구간이 확인되었다. 상대 처짐비와 LiDAR 계측 결과는 동일한 경향을 나타내었으며, 콘크리트 블록 포장의 높은 활용성과 시멘트 처리기층 단면의 지지력 향상 효과를 바탕으로 다양한 항만 부지에 널리 적용될 수 있을 것으로 판단된다.

Ports often suffer pavement damage due to soft ground and heavy equipment operations, leading to issues such as differential settlement and cracks. In this study, we developed port concrete blocks and applied them to a port in two configurations to figure out settlement characteristics. Falling weight deflectometer (FWD) tests on asphalt pavement and block pavements were conducted to figure out deflection and bearing capacity. The block pavement with the cement treated base showed improved bearing capacity with the port operation since lower settlements were detected than asphalt pavement. In the cement treated base, the relative deflection ratio to asphalt concrete pavement was less than 1, indicating enhanced bearing capacity. LiDAR measurements identified multiple settlements in the crushed-stone base due to surface loads after construction. Both relative deflection ratio and LiDAR measurements suggested that block pavement can be widely applied to various port sites with its applicability and bearing capacity of cement-treated base.

키워드

과제정보

This research was supported by Research service "ICT-based smart block development and application" funded by the Ministry of Oceans and Fisheries, Korea and Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries, Korea (20210659).

참고문헌

  1. Ahn, J. W., Kim, Y. S., Kwon, S. H. and Lee, C. K. (2001). "A study on the life cycle cost analysis and comparison by the type of road pavement - case study on the asphalt concrete and cement concrete pavement -." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 21, No. 5D, pp. 683-694 (in Korean). 
  2. Alatgi, P. S. and Pimplikar, S. S. (2022). "Pavement analysis and measurement of distress on concrete and bituminous roads using mobile LiDAR technology." Proceedings of Recent Trends in Construction Technology and Managemen, Springer, Singapore, pp. 1287-1294, https://doi.org/10.1007/978-981-19-2145-2_94. 
  3. Barnhart, T. B. and Crosby, B. T. (2013). "Comparing two methods of surface change detection on an evolving thermokarst using high-temporal-frequency terrestrial laser scanning, Selawik River, Alaska", Remote Sensing, MDPI, Vol. 5, No. 6, pp. 2813-2837, https://doi.org/10.3390/rs5062813. 
  4. Barsi, A., Poto, V., Logo, J. M. and Krausz, N. (2020). "Creating an OpenDRIVE model of the campus of the Budapest university of technology and economics for automotive simulations." Periodica Polytechnica Civil Engineering, Budapest University of Technology and Economics, Vol. 64, No. 4, pp. 1269-1274, https://doi.org/10.3311/PPci.16768. 
  5. Che, E., Olsen, M. J., Parrish, C. E. and Jung, J. (2019). "Pavement marking retroreflectivity estimation and evaluation using mobile LiDAR data." Photogrammetric Engineering and Remote Sensing, American Society for Photogrammetry and Remote Sensing, Vol. 85, No. 8, pp. 573-583, https://doi.org/10.14358/PERS.85.8.573. 
  6. Clark, A. J. (1978). "Block paving-research and development." Concrete, Concrete Society, Vol. 12, No. 7, pp. 24-25. 
  7. Diaz Flores, R., Aminbaghai, M., Eberhardsteiner, L., Blab, R., Buchta, M. and Pichler, B. L. (2023). "Multi-directional Falling Weight Deflectometer (FWD) testing and quantification of the effective modulus of subgrade reaction for concrete roads." International Journal of Pavement Engineering, ISCP, Vol. 24, No. 1, 2006651, https://doi.org/10.1080/10298436.2021.2006651. 
  8. Han, U. S., Park, T. W., Park, D. G., Baek, J. E. and Son, D. S. (2017). "Usability evaluation analysis on concrete block pavement for driveway." Journal of Korean Society of Road Engineers, KSRE, Vol. 19, No. 3, pp. 14-23 (in Korean). 
  9. Hu, F., Leijen, F. J. V., Chang, L., Wu, J. and Hanssen, R. F. (2019). "Monitoring deformation along railway systems combining multi-temporal InSAR and LiDAR data." Remote Sensing, MDPI, Vol. 11, No. 19, 2298, https://doi.org/10.3390/rs11192298. 
  10. Jafari, B., Khaloo, A. and Lattanzi, D. (2016). "Long-term monitoring of structures through point cloud analysis." Proceedings of Health Monitoring of Structural and Biological Systems, SPIE, Nevada, US, pp. 637-644, https://doi.org/10.1117/12.2217586. 
  11. Jiang, X., Gabrielson, J., Huang, B., Bai, Y., Polaczyk, P., Zhang, M., Hu, W. and Xiao, R. (2022a). "Evaluation of inverted pavement by structural condition indicators from falling weight deflectometer." Construction and Building Materials, Elsevier, Vol. 319, 125991, https://doi.org/10.1016/j.conbuildmat.2021.125991. 
  12. Jiang, X., Gabrielson, J., Titi, H., Huang, B., Bai, Y., Polaczyk, P., Hu, W., Zhang, M. and Xiao, R. (2022b). "Field investigation and numerical analysis of an inverted pavement system in Tennessee." Transportation Geotechnics, Elsevier, Vol. 35, 100759, https://doi.org/10.1016/j.trgeo.2022.100759. 
  13. Jung, J. S., Park, Y. B., Lee, K. H. and Hwang, C. K. (2008). "A study on the performance evaluation and the improvement of the quality standard of block pavements." International Journal of Highway Engineering, Vol. 10, No. 2, pp. 115-124 (in Korean). 
  14. Kaakkurivaara, T., Vuorimies, N., Kolisoja, P. and Uusitalo, J. (2015). "Applicability of portable tools in assessing the bearing capacity of forest roads." Silva Fennica, the Finnish Society of Forest Science, Vol. 49, No. 2, 1239, https://doi.org/10.14214/sf.1239. 
  15. Katicha, S. W., Flintsch, G. W., Ferne, B. and Bryce, J. (2014). "Limits of agreement method for comparing TSD and FWD measurements." International Journal of Pavement Engineering, ISCP, Vol. 15, No. 6, pp. 532-541, https://doi.org/10.1080/10298436. 2013.782403. 
  16. Kim, Y. R., Hibbs, B. O. and Lee, Y. C. (1995). "Temperature correction of deflections and backcalculated asphalt concrete moduli." Transportation Research Record, Transportation Research Board, Vol. 1473, pp. 55-62. 
  17. Kim, D. H., Jokhio, S. and Kim, J. T. (2020). "Study on operational efficiency of intersection with safety warning information overcoming disqualified driver's sight distance in port area." Journal of Korean Society of Transportation, KST, Vol. 38, No. 5, pp. 404-413, https://doi.org/10.7470/jkst.2020.38.5.404. 
  18. Kim, S. M. and Nam, J. H. (2005). "Temperature patterns in concrete pavements at very early ages." International Journal of Highway Engineering, KSRE, Vol. 7, No. 3, pp. 79-91. 
  19. Lague, D., Brodu, N. and Leroux, J. (2013). "Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z)." ISPRS Journal of Photogrammetry and Remote Sensing, Elsevier, Vol. 82, pp. 10-26, https://doi.org/10.1016/j.isprsjprs.2013.04.009. 
  20. Lee, U. J., Im, Y. H. and Jo, Y. H. (2003). "Design and construction method of concrete block pavement."Journal of Korean Society of Road Engineers, KSRE, Vol. 5, No. 2, pp. 23-32 (in Korean). 
  21. Lee, S. Y. and Le, T. H. M. (2023). "Evaluating pavement performance in bus rapid transit systems: Lessons from Seoul, South Korea." Case Studies in Construction Materials, Elsevier, Vol. 18, e02065, https://doi.org/10.1016/j.cscm.2023.e02065. 
  22. Lee, J., Jo, H. and Oh, J. (2023). "Application of drone LiDAR survey for evaluation of a long-term consolidation settlement of large land reclamation." Applied Sciences, MDPI, Vol. 13, No. 14, 8277, https://doi.org/10.3390/app13148277. 
  23. Lee, J. H., Park, H. W., Cho, N. H., Gwak, P. J., Lee, J. I. and Jung, J. H. (2017). "Analysis of airport concrete pavement behavior through on-site HWD experiments." Proceedings of 17th Conference on Korean Society of Road Engineers, KSRE, Yeosu, Korea, pp.111. 
  24. Lee, J. P. Kang, D. J. and Rho, C. H. (2010). "Formulation of the estimation model of maintenance repair costs in Korean port private participation projects." The Korea Spatial Planning Review, KRIHS, Vol. 65, pp. 19-39, https://doi.org/10.15793/kspr.2010.65..002 (in Korean). 
  25. Leica Geosystems (2020). Leica Pegasus : Two mobile sensor platform, Available at: https://leica-geosystems.com/hu-hu/products/mobile-sensor-platforms/capture-platforms/leica-pegasus_two (Accessed: July 21, 2020). 
  26. Luo, R., Zhou, Z., Chu, X., Ma, W. and Meng, J. (2022). "3D deformation monitoring method for temporary structures based on multi-thread LiDAR point cloud." Measurement, Elsevier, Vol. 200, 111545, https://doi.org/10.1016/j.measurement.2022.111545. 
  27. Mampearachchi, W. K. and Gunarathna, W. P. H. (2010). "Finite-element model approach to determine support conditions and effective layout for concrete block paving." Journal of Materials in Civil Engineering, ASCE, Vol. 22, No. 11, pp. 1139-1147, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000118. 
  28. Mehta, Y. and Roque, R. (2003). "Evaluation of FWD data for determination of layer moduli of pavements." Journal of Materials in Civil Engineering, ASCE, Vol. 15, No. 1, pp. 25-31, https://doi.org/10.1061/(ASCE)0899-1561(2003)15:1(25). 
  29. Miura, Y., Takaura, M. and Tsuda, T. (1984). "Structural design of concrete block pavements by CBR method and its evaluation." Proceedings of Second International Conference on Concrete Block Paving, SEPT, Delft, the Netherlands, pp. 152-157. 
  30. Nishizawa, T., Furukawa, M., Hyodo, H. and Ueda, N. (2018). "A model for predicting permanent deformation of interlocking concrete block pavements on heavy duty roads." Proceedings of 12th International Conference on Concrete Block Pavement, SEPT, Seoul, Korea. 
  31. Oh, Y. S., Kwon, Y. S., Park, I. S., Hong, S. H., Lee, H. J., Lee, T. K. and Chang, S. Y. (2020). "Establishment of point cloud location accuracy evaluation facility for car-mounted mobile mapping system for mapping of high definition road maps." Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, KSGPC, Vol. 38, No. 4, pp. 383-390, https://doi.org/10.7848/ksgpc.2020.38.4.383 (in Korean). 
  32. Panda, B. C. and Ghosh, A. K. (2001). "Source of jointing sand for concrete block pavement." Journal of Materials in Civil Engineering, ASCE, Vol. 13, No. 3, pp. 235-237, https://doi.org/10.1061/(ASCE)0899-1561(2001)13:3(235). 
  33. Panda, B. C. and Ghosh, A. K. (2002). "Structural behavior of concrete block paving. II: Concrete blocks." Journal of Transportation Engineering, ASCE, Vol. 128, No. 2, pp. 130-135, https://doi.org/10.1061/(ASCE)0733-947X(2002)128:2(130). 
  34. Park, H. M., Kim, Y. T. and Lee, S. H. (2016). "An analysis on the nonlinear behavior of block pavements using multi-load level falling weight deflectometer testing." International Journal of Highway Engineering, KRSE, Vol. 18, No. 6, pp. 35-40, https://doi.org/10.7855/IJHE.2016.18.6.035 (in Korean). 
  35. Pidwerbesky, B. (1997a). "Evaluation of non-destructive in-situ tests for unbound granular pavements." IPENZ Transactions, IPENZ, Vol. 24, No. 1, pp. 12-17. 
  36. Pidwerbesky, B. (1997b). "Predicting rutting in unbound granular basecourses from Loadman and other in-situ non-destructive tests." Road & Transport Research, ARRB Group Ltd, Vol. 6, No. 3, pp. 16-25. 
  37. Qiao, J. and Butt, J. A. (2023). "Self-calibration of terrestrial laser scanner using a M3C2-based planar patch algorithm." ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 197, pp. 335-345, https://doi.org/10.1016/j.isprsjprs.2023.02.008. 
  38. Ryntathiang, T., Mazumdar, M. and Pandey, B. (2006). "Concrete block pavement for low volume roads." Proceedings of 8th International Conference on Concrete Block Paving, SEPT, San Francisco, CA, pp. 359-373. 
  39. Seok, J. H., Oh, H. J., Cho, Y. K., Kim, J. C., Choi, L. and Kim, S. M. (2014). "Measurement and analysis of crack width variation at continuously reinforced concrete pavement section in test road." Proceedings of Conference on Korean Society of Civil Engineers, KSCE, pp. 407-408 (in Korean). 
  40. Shackel, B. (1980a). "The design of interlocking concrete block pavements for road traffic." Proceedings of 1st International Conferences on Concrete Block Paving, SEPT, Newcastle, England, pp. 23-32. 
  41. Shackel, B. (1980b). "The performance of interlocking block pavements under accelerated trafficking." Proceedings of 1st International Conferences on Concrete Block Paving, SEPT, Newcastle, England, pp. 113-120. 
  42. Shackel, B., O'Keeffe, W. and O'Keeffe, L. (1993). "Concrete block paving tested as articulated slabs." Proceedings of 5th International Conferences on Concrete Pavement Design and Rehabilitation, West Lafayette, Indiana. 
  43. Sofia, H., Anas, E. and Faiz, O. (2020). "Mobile mapping, machine learning and digital twin for road infrastructure monitoring and maintenance: case study of mohammed VI bridge in Morocco." Proceedings of 2020 IEEE International Conference of Moroccan Geomatics, IEEE, Casablanca, Morocco, pp. 1-6, https://doi.org/10.1109/Morgeo49228.2020.9121882. 
  44. Tapete, D., Casagli, N., Luzi, G., Fanti, R., Gigli, G. and Leva, D. (2013). "Integrating radar and laser-based remote sensing techniques for monitoring structural deformation of archaeological monuments." Journal of Archaeological Science, Elsevier, Vol. 40, No. 1, pp. 176-189, https://doi.org/10.1016/j.jas.2012.07.024. 
  45. Yaginuma, H., Iikima, T. and Ikeda, T. (1998). "Evaluation on durability of interlocking block pavement under repeated loading by heavy vehicles." Proceedings of International Workshop on Concrete Block Paving, Colombia Institute of Cement Producers, Cartagena de Indias, Colombia. 
  46. Yoo, T. S., Han, S. H. and Lee, M. K. (2002). "A study on temperature distribution characteristics of concrete pavement using thermal analysis program (CP3D)." Proceedings of Conference on Korean Society of Road Engineers, KSRE, pp. 157-160 (in Korean). 
  47. Zhang, M., Zhang, J., Gong, H., Jia, X., Xiao, R., Huang, H. and Huang, B. (2022). "Numerical investigation of pavement responses under TSD and FWD loading." Construction and Building Materials, Elsevier, Vol. 318, 126014, https://doi.org/10.1016/j.conbuildmat.2021.126014.