DOI QR코드

DOI QR Code

2차원 나노소재를 활용한 고분자 건축자재의 난연코팅기술 개발

Fire-Protective Coating for Polymer Construction Materials using Two-dimensional Nanomaterials

  • 김한임 (한국건설기술연구원 구조연구본부)
  • 투고 : 2023.11.30
  • 심사 : 2024.01.23
  • 발행 : 2024.04.01

초록

폴리우레탄(PU) 폼과 같은 가연성 고분자 건축자재의 화재 안전성을 개선하기 위한 새로운 접근의 나노코팅 기술이 개발되었다. 산화 그래핀 (Graphene oxide, GO)과 같은 2차원 소재는 용액상에서 자기 정렬 및 점탄성적 특성을 보이는 액정성(Liquid Crystalline properties, LC)을 나타내며, 이를 이용하면 특정 농도 범위에서 3차원의 다공성 폼을 포함한 다양한 표면에 균일한 코팅이 가능하다. 또한, GO의 액정성을 이용하여 기능성 복합소재의 나노코팅을 위한 골격 구조체(Scaffold)를 형성할 수 있으며, 여기에 도파민(Dopamine)과 같은 무독성의 항산화성 저분자를 도입 후 폴리도파민(polydopamine, PDA)로의 중합을 유도하여 고난연성의 폴리도파민/산화그래핀 (PDA/GO) 나노복합체 코팅층을 형성할 수 있다. 또한 최종적으로 형성된 PDA/GO 코팅은 GO의 2차원 판상구조로 인하여 균일하게 적층된 나노시트 구조로 안정화되며, 이러한 구조적 특성으로 인하여 가스상의 유해 연소생성물의 발생과 확산을 효과적으로 저감할 수 있는 가스 차폐 효과도 유도할 수 있다. 이러한 2차원 소재의 액정성을 활용한 난연성 나노복합소재 코팅 기술은 다양한 유형의 고분자 건축 자재의 화재 안전성을 효과적으로 개선할 수 있는 친환경적이고 새로운 기술적 접근방식이 될 수 있다.

An environmentally-friendly nanocoating method that effectively adds flame retardant(FR) and gas shielding properties to combustible polymeric construction materials such as flexible polyurethane (PU) foam was studied. Naturally-driven two-dimensional(2D) nanomaterials such as graphene oxide (GO) can exhibit liquid crystalline (LC) properties in aqueous solutions, enabling uniform coatings on the various substrates including 3D-porous foams. LC phase-assisted coating serves as 3D-scaffold, facilitating the introduction of small molecules having antioxidant capabilities such as dopamine which is to form uniformly stacked FR coating. Additionally, the structural characteristics of the 2D-materials can effectively hinder the migration of toxic gases and flammable substances in the gas phase generated during combustion. This LC phase flame retardant coating technology could be a new approach to provide environmentally friendly and effective flame retardant and gas barrier properties to various types of polymeric materials.

키워드

과제정보

This work was supported by the Korea Institute of Civil Engineering and Building Technology Research project (20230143-001, 20230348-001), the Ministry of Science and ICT (NRF-2020R1C1C1003289) and the Basic Science Research Program funded by the Ministry of Education (NRF-2019R1A6A1A11055660). This paper complements the 2023 Convention paper.

참고문헌

  1. Cho, J. H., Vasagar, V., Shanmuganathan, K., Jones, A. R., Nazarenko, S. and Ellison, C. J. (2015). "Bioinspired catecholic flame retardant nanocoating for flexible polyurethane foams." Chemistry of Materials, ACS Publications, Vol. 27, No. 19, pp. 6784-6790, https://doi.org/10.1021/acs.chemmater.5b03013. 
  2. Gain, O., Espuche, E., Pollet, E., Alexandre, M. and Dubois, P. (2005). "Gas barrier properties of poly(ε-caprolactone)/clay nanocomposites: influence of the morphology and polymer/clay interactions." Journal of Polymer Science Part B: Polymer Physics, Wiley Periodicals, Vol. 43, No. 2, pp. 205-214, http://doi.org/10.1002/polb.20316. 
  3. Kaveh, P., Mortezaei, M., Barikani, M. and Khanbabaei, G. (2014). "Low-temperature flexible polyurethane/graphene oxide nanocomposites: effect of polyols and graphene oxide on physicomechanical properties and gas permeability." PolymerPlastics Technology and Engineering, Taylor & Francis, Vol. 53, No. 3, pp. 278-289, https://doi.org/10.1080/03602559.2013.844241. 
  4. Kim, H., Choi, W., Choi, S. E., Nomura, K., Kwark, J. W., Ellison, C. J. and Kim, D. W. (2024). "Tailored self-assembly of semi-transparent polymer/clay nanocomposites for gas-barrier applications assisted by aqueous liquid crystalline scaffolds." Progress in Organic Coatings, Elsevier, Vol. 186, 108003, https://doi.org/10.1016/j.porgcoat.2023.108003. 
  5. Kim, H. and Macosko, C. W. (2009). "Processing-property relationships of polycarbonate/graphene composites." Polymer, Elsevier, Vol. 50, No. 15, pp. 3797-3809, http://doi.org/10.1016/j.polymer.2009.05.038. 
  6. Kim, J. E., Han, T. H., Lee, S. H., Kim, J. Y., Ahn, C. W., Yun, J. M. and Kim, S. O. (2011). "Graphene oxide liquid crystals." Angewandte Chemie, GDCh, Vol. 50, No. 13, pp. 3043-3047, http://dx.doi.org/10.1002/anie.201004692. 
  7. Kim, D. W., Kim, H., Jin, M. L. and Ellison, C. J. (2019). "Impermeable gas barrier coating by facilitated diffusion of ethylenediamine through graphene oxide liquid crystals." Carbon, Elsevier, Vol. 148, pp. 28-35, https://doi.org/10.1016/j.carbon.2019.03.039. 
  8. Kim, H., Kim, D. W., Vasagar, V., Ha, H., Nazarenko, S. and Ellison, C. J. (2018). "Polydopamine-graphene oxide flame retardant nanocoatings applied via an aqueous liquid crystalline scaffold." Advanced Functional Materials, Wiley-VCH, Vol. 28, No. 39, 1803172, http://doi.org/10.1002/adfm.201803172. 
  9. Kumar, P., Maiti, U. N., Lee, K. E. and Kim, S. O. (2014). "Rheological properties of graphene oxide liquid crystal." Carbon, Elsevier, Vol. 80, pp. 453-461, http://dx.doi.org/10.1016/j.carbon.2014.08.085. 
  10. Levchik, S. V. and Weil, E. D. (2004). "Thermal decomposition, combustion and fire-retardancy of polyurethanes - a review of the recent literature." Polymer International, Society of Chemical Industry, Vol. 53, No. 11, pp. 1585-1610, http://doi.org/10.1002/pi.1314. 
  11. Liang, S., Neisius, N. M. and Gaan, S. (2013). "Recent developments in flame retardant polymeric coatings." Progress in Organic Coatings, Elsevier, Vol. 76, No. 11, pp. 1642-1665, https://doi.org/10.1016/j.porgcoat.2013.07.014. 
  12. Malucelli, G. (2016). "Surface-engineered fire protective coatings for fabrics through sol-gel and layer-by-layer methods: An overview." Coatings, MDPI, Vol. 6, No. 3, 33, https://doi.org/10.3390/coatings6030033. 
  13. Morgan, A. B. and Wilkie, C. A. (2006). Flame Retardant Polymer Nanocomposites, John Wiley & Sons, Inc. New Jersey. 
  14. Picard, E., Espuche, E. and Fulchiron, R. (2011). "Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties." Applied Clay Science, Elsevier, Vol. 53, No. 1, pp. 58-65, http://doi.org/10.1016/j.clay.2011.04.023. 
  15. Singh, H. and Jain, A. K. (2008). "Ignition, combustion, toxicity, and fire retardancy of polyurethane foams: A comprehensive review." Journal of Applied Polymer Science, Wiley Periodicals, Vol. 111, No. 2, pp. 1115-1143, https://doi.org/10.1002/app.29131. 
  16. Stapleton, H. M., Klosterhaus, S., Keller, A., Ferguson, P. L., van Bergen, S., Cooper, E., Webster, T. F. and Blum, A. (2011). "Identification of flame retardants in polyurethane foam collected from baby products." Environmental Science & Technology, American Chemical Society, Vol. 45, No. 12, pp. 5323-5331, http://doi.org/10.1021/es2007462. 
  17. Tzeng, P., Lugo, E. L., Mai, G. D., Wilhite, B. A. and Grunlan, J. C. (2015). "Super hydrogen and helium barrier with polyelectolyte nanobrick wall thin film." Macromolecular Rapid Communications, Wiley-VCH, Vol. 36, No. 1, pp. 96-101, http://doi.org/10.1002/marc.201400559. 
  18. Villaluenga, J. P. G., Khayet, M., Lopez-Manchado, M. A., Valentin, J. L., Seoane, B. and Mengual, J. I. (2007). "Gas transport properties of polypropylene/clay composite membranes." European Polymer Journal, Elsevier, Vol. 43, No. 4, pp. 1132-1143, http://doi.org/10.1016/j.eurpolymj.2007.01.018. 
  19. Wang, X., Kalali, E. N., Wan, J. T. and Wang, D. Y. (2017). "Carbon-family materials for flame retardant polymeric materials." Progress in Polymer Science, Elsevier, Vol. 69, pp. 22-46, http://doi.org/10.1016/j.progpolymsci.2017.02.001. 
  20. Yang, H., Yu, B., Song, P., Maluk, C. and Wang, H. (2019). "Surface-coating engineering for flame retardant flexible polyurethane foams: A critical review." Composites Part B: Engineering, Elsevier, Vol. 176, 107185, https://doi.org/10.1016/j.compositesb.2019.107185. 
  21. Yucel, O., Yucel, O., Unsal, E., Harvey, J., Graham, M., Jones, D. H. and Cakmak, M. (2014). "Enhanced gas barrier and mechanical properties in organoclay reinforced multi-layer poly(amideimide) nanocomposite film." Polymer, Elsevier, Vol. 55, No. 16, pp. 4091-4101, http://doi.org/10.1016/j.polymer.2014.06.058.