DOI QR코드

DOI QR Code

내진 구조용 압축재로 활용을 위한 폴리케톤의 특성 평가

Properties Evaluation of Polyketone for Use as Earthquake-Resistant Structural Compression Material

  • 이헌우 (인천대학교 건설환경공학과) ;
  • 노진원 (인천대학교 건설환경공학과) ;
  • 김영찬 (인천대학교 산학협력단, 인천방재연구센터) ;
  • 허종완 (인천대학교 도시환경공학부)
  • 투고 : 2023.12.13
  • 심사 : 2023.12.26
  • 발행 : 2024.04.01

초록

본 연구는 현재 내진 구조 분야에서 압축부재로 사용되고 있는 폴리우레탄의 한계를 극복하기 위해 폴리케톤이라는 신소재 제안을 목적으로 한다. 기존 폴리우레탄은 우수한 탄성 특성을 지녔음에도 불구하고 구조물에 발생하는 변위를 회복하기에는 부족한 경향이 있다. 반면, 폴리케톤은 뛰어난 강도 성능을 보유함과 동시에 친환경 소재로 주목받고 있다. 이러한 장점을 가진 폴리케톤의 압축특성 평가를 위하여 기존에 사용되고 있던 폴리우레탄과의 비교실험을 진행하고자 한다. 단순압축실험과 반복 하중 조건에서의 실험 속도 변화를 통해 폴리케톤의 속도 의존성을 파악하고, 추가적으로 선행압축을 적용하여 압축거동 특성을 확인하였다. 폴리케톤은 폴리우레탄에 비하여 약 10배가량 높은 압축강도를 나타내었으며 비교적 작은 변위에서는 14배가량 높은 변형 회복능력으로 폴리케톤의 우수한 회복특성을 입증하였다.

The purpose of this study is to propose a new material called polyketone to overcome the limitations of polyurethane, which is currently used as a compression member in the field of earthquake-resistant structures. Although existing polyurethane has excellent elastic properties, it tends to be insufficient to recover the displacement that occurs in the structure. On the other hand, polyketone has excellent strength performance and is attracting attention as an eco-friendly material. In order to evaluate the compression properties of polyketone, which has these advantages, we would like to conduct a comparative experiment with polyurethane that was previously used. The speed dependence of polyketone was identified through simple compression experiments and experimental speed changes under repeated loading conditions, and additional compression behavior was applied to confirm compression behavior characteristics. Polyketone showed compressive strength about 10 times higher than that of polyurethane, and its excellent recovery characteristics were demonstrated by its deformation recovery ability about 14 times higher at relatively small displacements.

키워드

과제정보

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education(grant number : RS-2023-00248140).

참고문헌

  1. Bahl, S., Nagar, H., Singh, I. and Sehgal, S. (2020). "Smart materials types, properties and applications: A review." Materials Today: Proceedings, Elsevier, Vol. 28, pp. 1302-1306, https://doi.org/10.1016/j.matpr.2020.04.505. 
  2. Bogue, R. (2012). "Smart materials: a review of recent developments." Assembly Automation, Emerald Publishing, Vol. 32, No. 1, pp. 3-7, https://doi.org/10.1108/01445151211198674. 
  3. Chen, W., Lu, F. and Winfree, N. (2002). "High-strain-rate compressive behavior of a rigid polyurethane foam with various densities." Experimental Mechanics, SEM, Vol. 42, pp. 65-73, https://doi.org/10.1007/BF02411053. 
  4. Choi, E., Jeon, J. S. and Seo, J. (2017). "Cyclic compressive behavior of polyurethane rubber springs for smart dampers." Techno-Press, Vol. 20, No. 6, pp. 739-757, https://doi.org/10.12989/sss.2017.20.6.739. 
  5. Doman, D. A., Cronin, D. S. and Salisbury, C. P. (2006). "Characterization of polyurethane rubber at high deformation rates." Experimental Mechanics, SEM, Vol. 46, pp. 367-376, https://doi.org/10.1007/s11340-006-6422-8. 
  6. Gokce, T., Yuksel, E. and Orakdogen, E. (2019). "Seismic performance enhancement of high-voltage post insulators by a polyurethane spring isolation device." Bulletin of Earthquake Engineering, EAEE, Vol. 17, pp. 1739-1762, https://doi.org/10.1007/s10518-018-0494-6. 
  7. Ju, Y. H. and Hu, J. W. (2021). "Experimental study on the behavior of polyurethane springs for compression members." Applied Sciences, MDPI, Vol. 11, No. 21, 10223, https://doi.org/10.3390/app112110223. 
  8. Kim, Y. C., Lee, H. W. and Hu, J. W. (2023a). "A study on performance evaluation of hybrid dampers." Structures, Elsevier, Vol. 58, 105354, https://doi.org/10.1016/j.istruc.2023.105354. 
  9. Kim, Y. C., Lee, H. W. and Hu, J. W. (2023b). "Experimental performance evaluation of elastic friction damper." Case Studies in Construction Materials, Elsevier, Vol. 18, e01823, https://doi.org/10.1016/j.cscm.2023.e01823. 
  10. Mancke, R. G. and Landel, R. F. (1972). "Stress-strain behavior of a polyurethane rubber in combined torsion and tension or compression." Journal of Polymer Science: Polymer Physics Edition, Wiley, Vol. 10, No. 10, pp. 2041-2049, https://doi.org/10.1002/pol.1972.180101014. 
  11. Mirzai, N. M., Attarnejad, R. and Hu, J. W. (2021). "Experimental investigation of smart shear dampers with re-centering and friction devices." Journal of Building Engineering, Elsevier, Vol. 35, 102018, https://doi.org/10.1016/j.jobe.2020.102018.