DOI QR코드

DOI QR Code

Diagnosis and Treatment of Myelodysplastic Syndrome in the Era of Genetic Testing

유전자 검사 시대 골수형성이상증후군의 진단과 치료

  • Junshik Hong (Department of Internal Medicine, Seoul National University College of Medicine)
  • 홍준식 (서울대학교 의과대학 내과학교실)
  • Received : 2024.01.03
  • Accepted : 2024.01.23
  • Published : 2024.02.01

Abstract

Myelodysplastic syndrome (MDS) is a heterogeneous disorder with diverse prognoses influenced by cytopenias, genetic variants, and myeloblast proportions in the bone marrow. Accurate prognosis prediction and tailored treatment plans are essential. The International Prognostic Scoring System-Molecular (IPSS-M), which additionally reflects the impact of MDS-related genetic mutations to the clinical and laboratory information, is anticipated to offer superior prognostic accuracy compared to existing systems like the Revised International Prognostic Scoring System (IPSS-R). Despite its statistical complexity, its web-based calculation and ease of discussing results with patients using intuitive data sets provide notable advantages. Progress in MDS treatment, exemplified by effective anemia correction with an erythropoiesis-maturation agent in SF3B1-mutated cases and efforts to refine poor prognoses in TP53-mutated cases, reflects the evolving landscape of genetic-based interventions in MDS. Advancements in genetic diagnostic technology, combined with enhanced knowledge of the bone marrow niche, are anticipated to lead to significant improvement in MDS treatment outcomes in the future.

Keywords

References

  1. Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia 2022;36:1703-1719. https://doi.org/10.1038/s41375-022-01613-1
  2. Greenberg PL, Tuechler H, Schanz J, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood 2012;120:2454-2465. https://doi.org/10.1182/blood-2012-03-420489
  3. Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997;89:2079-2088. https://doi.org/10.1182/blood.V89.6.2079
  4. Haferlach T, Nagata Y, Grossmann V, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 2014;28:241-247. https://doi.org/10.1038/leu.2013.336
  5. Ogawa S. Genetics of MDS. Blood 2019;133:1049-1059. https://doi.org/10.1182/blood-2018-10-844621
  6. Bernard E, Tuechler H, Greenberg PL, et al. Molecular international prognostic scoring system for myelodysplastic syndromes. NEJM Evid 2022;1:2200008.
  7. List A, Dewald G, Bennett J, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med 2006;355:1456-1465. https://doi.org/10.1056/NEJMoa061292
  8. Aguirre LE, Al Ali N, Sallman DA, et al. Assessment and validation of the molecular international prognostic scoring system for myelodysplastic syndromes. Leukemia 2023;37:1530-1539. https://doi.org/10.1038/s41375-023-01910-3
  9. Kewan T, Bahaj W, Durmaz A, et al. Validation of the molecular international prognostic scoring system in patients with myelodysplastic syndromes. Blood 2023;141:1768-1772. https://doi.org/10.1182/blood.2022018896
  10. Sauta E, Robin M, Bersanelli M, et al. Real-world validation of molecular international prognostic scoring system for myelodysplastic syndromes. J Clin Oncol 2023;41:2827-2842. https://doi.org/10.1200/JCO.22.01784
  11. Yang T, Jiang B, Luo Y, et al. Comparison of the prognostic predictive value of molecular international prognostic scoring system and revised international prognostic scoring system in patients undergoing allogeneic hematopoietic stem cell transplantation for myelodysplastic neoplasms. Am J Hematol 2023;98:E391-E394. https://doi.org/10.1002/ajh.27099
  12. Bejar R. How can we incorporate molecular data into the IPSS? Best Pract Res Clin Haematol 2022;35:101410.
  13. Arber DA, Orazi A, Hasserjian RP, et al. International consensus classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data. Blood 2022;140:1200-1228. https://doi.org/10.1182/blood.2022015850
  14. Carraway HE, Saygin C. Therapy for lower-risk MDS. Hematology Am Soc Hematol Educ Program 2020;2020:426-433. https://doi.org/10.1182/hematology.2020000127
  15. Fenaux P, Platzbecker U, Mufti GJ, et al. Luspatercept in patients with lower-risk myelodysplastic syndromes. N Engl J Med 2020;382:140-151. https://doi.org/10.1056/NEJMoa1908892
  16. Suragani RN, Cawley SM, Li R, et al. Modified activin receptor IIB ligand trap mitigates ineffective erythropoiesis and disease complications in murine β-thalassemia. Blood 2014;123:3864-3872. https://doi.org/10.1182/blood-2013-06-511238
  17. Platzbecker U, Gotze KS, Kiewe P, et al. Long-term efficacy and safety of luspatercept for anemia treatment in patients with lower-risk myelodysplastic syndromes: the phase II PACE-MDS study. J Clin Oncol 2022;40:3800-3807. https://doi.org/10.1200/JCO.21.02476
  18. De La Garza A, Cameron RC, Gupta V, Fraint E, Nik S, Bowman TV. The splicing factor Sf3b1 regulates erythroid maturation and proliferation via TGFβ signaling in zebrafish. Blood Adv 2019;3:2093-2104. https://doi.org/10.1182/bloodadvances.2018027714
  19. Platzbecker U, Della Porta MG, Santini V, et al. Efficacy and safety of luspatercept versus epoetin alfa in erythropoiesis-stimulating agent-naive, transfusion-dependent, lower-risk myelodysplastic syndromes (COMMANDS): interim analysis of a phase 3, open-label, randomised controlled trial. Lancet 2023;402:373-385. https://doi.org/10.1016/S0140-6736(23)00874-7
  20. Campo E, Cymbalista F, Ghia P, et al. TP53 aberrations in chronic lymphocytic leukemia: an overview of the clinical implications of improved diagnostics. Haematologica 2018; 103:1956-1968. https://doi.org/10.3324/haematol.2018.187583
  21. Bernard E, Nannya Y, Hasserjian RP, et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat Med 2020; 26:1549-1556. https://doi.org/10.1038/s41591-020-1008-z
  22. Grob T, Al Hinai ASA, Sanders MA, et al. Molecular characterization of mutant TP53 acute myeloid leukemia and high-risk myelodysplastic syndrome. Blood 2022;139:2347-2354. https://doi.org/10.1182/blood.2021014472
  23. de Witte T, Bowen D, Robin M, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. Blood 2017;129:1753-1762. https://doi.org/10.1182/blood-2016-06-724500
  24. da Silva-Coelho P, Kroeze LI, Yoshida K, et al. Clonal evolution in myelodysplastic syndromes. Nat Commun 2017;8:15099.
  25. Cogle CR, Saki N, Khodadi E, Li J, Shahjahani M, Azizidoost S. Bone marrow niche in the myelodysplastic syndromes. Leuk Res 2015;39:1020-1027. https://doi.org/10.1016/j.leukres.2015.06.017