DOI QR코드

DOI QR Code

Predicting Recurrence-Free Survival After Upfront Surgery in Resectable Pancreatic Ductal Adenocarcinoma: A Preoperative Risk Score Based on CA 19-9, CT, and 18F-FDG PET/CT

  • Boryeong Jeong (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Minyoung Oh (Department of Nuclear Medicine, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Seung Soo Lee (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Nayoung Kim (Department of Clinical Epidemiology and Biostatistics, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Jae Seung Kim (Department of Nuclear Medicine, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Woohyung Lee (Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Song Cheol Kim (Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Hyoung Jung Kim (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Jin Hee Kim (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Jae Ho Byun (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center)
  • 투고 : 2023.12.12
  • 심사 : 2024.04.12
  • 발행 : 2024.07.01

초록

Objective: To develop and validate a preoperative risk score incorporating carbohydrate antigen (CA) 19-9, CT, and fluorine18-fluorodeoxyglucose (18F-FDG) PET/CT variables to predict recurrence-free survival (RFS) after upfront surgery in patients with resectable pancreatic ductal adenocarcinoma (PDAC). Materials and Methods: Patients with resectable PDAC who underwent upfront surgery between 2014 and 2017 (development set) or between 2018 and 2019 (test set) were retrospectively evaluated. In the development set, a risk-scoring system was developed using the multivariable Cox proportional hazards model, including variables associated with RFS. In the test set, the performance of the risk score was evaluated using the Harrell C-index and compared with that of the postoperative pathological tumor stage. Results: A total of 529 patients, including 335 (198 male; mean age ± standard deviation, 64 ± 9 years) and 194 (103 male; mean age, 66 ± 9 years) patients in the development and test sets, respectively, were evaluated. The risk score included five variables predicting RFS: tumor size (hazard ratio [HR], 1.29 per 1 cm increment; P < 0.001), maximal standardized uptake values of tumor ≥ 5.2 (HR, 1.29; P = 0.06), suspicious regional lymph nodes (HR, 1.43; P = 0.02), possible distant metastasis on 18F-FDG PET/CT (HR, 2.32; P = 0.03), and CA 19-9 (HR, 1.02 per 100 U/mL increment; P = 0.002). In the test set, the risk score showed good performance in predicting RFS (C-index, 0.61), similar to that of the pathologic tumor stage (C-index, 0.64; P = 0.17). Conclusion: The proposed risk score based on preoperative CA 19-9, CT, and 18F-FDG PET/CT variables may have clinical utility in selecting high-risk patients with resectable PDAC.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2020R1F1A1048826).

참고문헌

  1. Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet 2020;395:2008-2020
  2. Kim DW, Lee SS, Kim SO, Kim JH, Kim HJ, Byun JH, et al. Estimating recurrence after upfront surgery in patients with resectable pancreatic ductal adenocarcinoma by using pancreatic CT: development and validation of a risk score. Radiology 2020;296:541-551
  3. National Comprehensive Cancer Network. Pancreatic adenocarcinoma, version 2.2022. NCCN clinical practice guidelines in oncology [accessed on June 10, 2023]. Available at: https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf
  4. Committee of the Korean Clinical Practice Guideline for Pancreatic Cancer and National Cancer Center, Korea. Korean clinical practice guideline for pancreatic cancer 2021: a summary of evidence-based, multi-disciplinary diagnostic and therapeutic approaches. Pancreatology 2021;21:1326-1341
  5. Ghaneh P, Palmer D, Cicconi S, Jackson R, Halloran CM, Rawcliffe C, et al. Immediate surgery compared with short-course neoadjuvant gemcitabine plus capecitabine, FOLFIRINOX, or chemoradiotherapy in patients with borderline resectable pancreatic cancer (ESPAC5): a four-arm, multicentre, randomised, phase 2 trial. Lancet Gastroenterol Hepatol 2023;8:157-168
  6. Oba A, Del Chiaro M, Satoi S, Kim SW, Takahashi H, Yu J, et al. New criteria of resectability for pancreatic cancer: a position paper by the Japanese Society of Hepato-Biliary-Pancreatic Surgery (JSHBPS). J Hepatobiliary Pancreat Sci 2022;29:725-731
  7. Isaji S, Mizuno S, Windsor JA, Bassi C, Fernandez-Del Castillo C, Hackert T, et al. International consensus on definition and criteria of borderline resectable pancreatic ductal adenocarcinoma 2017. Pancreatology 2018;18:2-11
  8. Ushida Y, Inoue Y, Ito H, Oba A, Mise Y, Ono Y, et al. High CA19-9 level in resectable pancreatic cancer is a potential indication of neoadjuvant treatment. Pancreatology 2021;21:130-137
  9. Takahashi H, Yamada D, Asukai K, Wada H, Hasegawa S, Hara H, et al. Clinical implications of the serum CA19-9 level in "biological borderline resectability" and "biological downstaging" in the setting of preoperative chemoradiation therapy for pancreatic cancer. Pancreatology 2020;20:919-928
  10. Moon D, Kim H, Han Y, Byun Y, Choi Y, Kang J, et al. Preoperative carbohydrate antigen 19-9 and standard uptake value of positron emission tomography-computed tomography as prognostic markers in patients with pancreatic ductal adenocarcinoma. J Hepatobiliary Pancreat Sci 2022;29:1133-1141
  11. Barnes CA, Aldakkak M, Clarke CN, Christians KK, Bucklan D, Holt M, et al. Value of pretreatment 18F-fluorodeoxyglucose positron emission tomography in patients with localized pancreatic cancer treated with neoadjuvant therapy. Front Oncol 2020;10:500
  12. Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med 2015;162:W1-W73
  13. Bosman FT, Carneiro F, Hruban RH, Theise ND. WHO classification of tumours of the digestive system. 4th ed. Geneva: World Health Organization, 2010
  14. Hong SB, Lee SS, Kim JH, Kim HJ, Byun JH, Hong SM, et al. Pancreatic cancer CT: prediction of resectability according to NCCN criteria. Radiology 2018;289:710-718
  15. Strijker M, Chen JW, Mungroop TH, Jamieson NB, van Eijck CH, Steyerberg EW, et al. Systematic review of clinical prediction models for survival after surgery for resectable pancreatic cancer. Br J Surg 2019;106:342-354
  16. Tsen A, Barbara M, Rosenkranz L. Dilemma of elevated CA 19-9 in biliary pathology. Pancreatology 2018;18:862-867
  17. Kim SS, Lee S, Lee HS, Bang S, Han K, Park MS. Retrospective evaluation of treatment response in patients with nonmetastatic pancreatic cancer using CT and CA 19-9. Radiology 2022;303:548-556
  18. Al-Hawary MM, Francis IR, Chari ST, Fishman EK, Hough DM, Lu DS, et al. Pancreatic ductal adenocarcinoma radiology reporting template: consensus statement of the Society of Abdominal Radiology and the American Pancreatic Association. Radiology 2014;270:248-260
  19. Nishiyama Y, Yamamoto Y, Yokoe K, Monden T, Sasakawa Y, Tsutsui K, et al. Contribution of whole body FDG-PET to the detection of distant metastasis in pancreatic cancer. Ann Nucl Med 2005;19:491-497
  20. Hofman MS, Hicks RJ. How we read oncologic FDG PET/CT. Cancer Imaging 2016;16:35
  21. Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, et al. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. CA Cancer J Clin 2017;67:93-99
  22. Campbell F, Cairns A, Duthie F, Feakins R. Dataset for histopathological reporting of carcinomas of the pancreas, ampulla of Vater and common bile duct [accessed on June 10, 2023]. Available at: https://www.rcpath.org/static/34910231-c106-4629-a2de9e9ae6f87ac1/G091-Dataset-for-histopathological-reporting-of-carcinomas-of-the-pancreas-ampulla-of-Vater-and-common-bile-duct.pdf
  23. Schafer JL. Analysis of incomplete multivariate data. New York: CRC Press, 1997
  24. Royston P, Parmar MK. Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Stat Med 2002;21:2175-2197
  25. Bewick V, Cheek L, Ball J. Statistics review 13: receiver operating characteristic curves. Crit Care 2004;8:508-512
  26. Sullivan LM, Massaro JM, D'Agostino RB Sr. Presentation of multivariate data for clinical use: the Framingham study risk score functions. Stat Med 2004;23:1631-1660
  27. Chambless LE, Diao G. Estimation of time-dependent area under the ROC curve for long-term risk prediction. Stat Med 2006;25:3474-3486
  28. Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996;15:361-387
  29. van Houwelingen HC. Validation, calibration, revision and combination of prognostic survival models. Stat Med 2000;19:3401-3415
  30. Crowson CS, Atkinson EJ, Therneau TM. Assessing calibration of prognostic risk scores. Stat Methods Med Res 2016;25:1692-1706
  31. Pepe M, Longton G, Janes H. Estimation and comparison of receiver operating characteristic curves. Stata J 2009;9:1
  32. Bilici A. Prognostic factors related with survival in patients with pancreatic adenocarcinoma. World J Gastroenterol 2014;20:10802-10812
  33. Ferrone CR, Finkelstein DM, Thayer SP, Muzikansky A, Fernandez-delCastillo C, Warshaw AL. Perioperative CA19-9 levels can predict stage and survival in patients with resectable pancreatic adenocarcinoma. J Clin Oncol 2006;24:2897-2902
  34. Hartwig W, Strobel O, Hinz U, Fritz S, Hackert T, Roth C, et al. CA19-9 in potentially resectable pancreatic cancer: perspective to adjust surgical and perioperative therapy. Ann Surg Oncol 2013;20:2188-2196
  35. Hess V, Glimelius B, Grawe P, Dietrich D, Bodoky G, Ruhstaller T, et al. CA 19-9 tumour-marker response to chemotherapy in patients with advanced pancreatic cancer enrolled in a randomised controlled trial. Lancet Oncol 2008;9:132-138
  36. Lee W, Oh M, Kim JS, Park Y, Kwon JW, Jun E, et al. Metabolic activity by FDG-PET/CT after neoadjuvant chemotherapy in borderline resectable and locally advanced pancreatic cancer and association with survival. Br J Surg 2021;109:61-70
  37. Panda A, Garg I, Truty MJ, Kline TL, Johnson MP, Ehman EC, et al. Borderline resectable and locally advanced pancreatic cancer: FDG PET/MRI and CT tumor metrics for assessment of pathologic response to neoadjuvant therapy and prediction of survival. AJR Am J Roentgenol 2021;217:730-740
  38. Yoon JK, Park MS, Kim SS, Han K, Lee HS, Bang S, et al. Regional lymph node metastasis detected on preoperative CT and/or FDG-PET may predict early recurrence of pancreatic adenocarcinoma after curative resection. Sci Rep 2022;12:17296