DOI QR코드

DOI QR Code

Influenza Virus-Derived CD8 T Cell Epitopes: Implications for the Development of Universal Influenza Vaccines

  • Sang-Hyun Kim (Department of Pharmacy, Korea University College of Pharmacy) ;
  • Erica Espano (Department of Pharmacy, Korea University College of Pharmacy) ;
  • Bill Thaddeus Padasas (Department of Pharmacy, Korea University College of Pharmacy) ;
  • Ju-Ho Son (Department of Pharmacy, Korea University College of Pharmacy) ;
  • Jihee Oh (Department of Pharmacy, Korea University College of Pharmacy) ;
  • Richard J. Webby (Department of Infectious Diseases, St. Jude Children's Research Hospital) ;
  • Young-Ran Lee (Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Chan-Su Park (Department of Pharmaceutics, College of Pharmacy, Chungbuk National University) ;
  • Jeong-Ki Kim (Department of Pharmacy, Korea University College of Pharmacy)
  • 투고 : 2024.03.29
  • 심사 : 2024.04.29
  • 발행 : 2024.06.30

초록

The influenza virus poses a global health burden. Currently, an annual vaccine is used to reduce influenza virus-associated morbidity and mortality. Most influenza vaccines have been developed to elicit neutralizing Abs against influenza virus. These Abs primarily target immunodominant epitopes derived from hemagglutinin (HA) or neuraminidase (NA) of the influenza virus incorporated in vaccines. However, HA and NA are highly variable proteins that are prone to antigenic changes, which can reduce vaccine efficacy. Therefore, it is essential to develop universal vaccines that target immunodominant epitopes derived from conserved regions of the influenza virus, enabling cross-protection among different virus variants. The internal proteins of the influenza virus serve as ideal targets for universal vaccines. These internal proteins are presented by MHC class I molecules on Ag-presenting cells, such as dendritic cells, and recognized by CD8 T cells, which elicit CD8 T cell responses, reducing the likelihood of disease and influenza viral spread by inducing virus-infected cell apoptosis. In this review, we highlight the importance of CD8 T cell-mediated immunity against influenza viruses and that of viral epitopes for developing CD8 T cell-based influenza vaccines.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (2022R1A2C101155313 and 2022R1A6A3A01087444), a Korea University grant series (K2300381 and L2303641) and ALSAC.

참고문헌

  1. World Health Organization (WHO). Fact Sheet: Influenza (Seasonal) [Internet]. Available at https://www.who.int/en/news-room/fact-sheets/detail/influenza-(seasonal) [accessed on 12 January 2023].
  2. Hagiwara Y, Harada K, Nealon J, Okumura Y, Kimura T, Chaves SS. Seasonal influenza, its complications and related healthcare resource utilization among people 60 years and older: a descriptive retrospective study in Japan. PLoS One 2022;17:e0272795.
  3. Comber L, O Murchu E, Jordan K, Hawkshaw S, Marshall L, O'Neill M, Teljeur C, Ryan M, Carnahan A, Perez Martin JJ, et al. Systematic review of the efficacy, effectiveness and safety of high-dose seasonal influenza vaccines for the prevention of laboratory-confirmed influenza in individuals ≥18 years of age. Rev Med Virol 2023;33:e2330.
  4. Peteranderl C, Herold S, Schmoldt C. Human influenza virus infections. Semin Respir Crit Care Med 2016;37:487-500.
  5. Krammer F, Smith GJ, Fouchier RA, Peiris M, Kedzierska K, Doherty PC, Palese P, Shaw ML, Treanor J, Webster RG, et al. Influenza. Nat Rev Dis Primers 2018;4:3.
  6. Centers for Disease Control and Prevention (CDC). Flu symptoms & complications [Internet]. Available at https://www.cdc.gov/flu/symptoms/symptoms.htm [accessed on 3 October 2022].
  7. Rcheulishvili N, Papukashvili D, Liu C, Ji Y, He Y, Wang PG. Promising strategy for developing mRNA-based universal influenza virus vaccine for human population, poultry, and pigs- focus on the bigger picture. Front Immunol 2022;13:1025884.
  8. Wang WC, Sayedahmed EE, Sambhara S, Mittal SK. Progress towards the development of a universal influenza vaccine. Viruses 2022;14:1684.
  9. Jazayeri SD, Poh CL. Development of universal influenza vaccines targeting conserved viral proteins. Vaccines (Basel) 2019;7:169.
  10. Nachbagauer R, Palese P. Is a universal influenza virus vaccine possible? Annu Rev Med 2020;71:315-327.
  11. Du R, Cui Q, Rong L. Flu universal vaccines: new tricks on an old virus. Virol Sin 2021;36:13-24.
  12. Li J, Zhang Y, Zhang X, Liu L. Influenza and universal vaccine research in China. Viruses 2022;15:116.
  13. Mezhenskaya D, Isakova-Sivak I, Rudenko L. M2e-based universal influenza vaccines: a historical overview and new approaches to development. J Biomed Sci 2019;26:76.
  14. Beans C. Researchers getting closer to a "universal" flu vaccine. Proc Natl Acad Sci U S A 2022;119:e2123477119.
  15. Wang Y, Deng L, Kang SM, Wang BZ. Universal influenza vaccines: from viruses to nanoparticles. Expert Rev Vaccines 2018;17:967-976.
  16. Jang YH, Seong BL. The quest for a truly universal influenza vaccine. Front Cell Infect Microbiol 2019;9:344.
  17. Wiesel M, Walton S, Richter K, Oxenius A. Virus-specific CD8 T cells: activation, differentiation and memory formation. APMIS 2009;117:356-381.
  18. Prigge AD, Ma R, Coates BM, Singer BD, Ridge KM. Age-dependent differences in T-cell responses to influenza A virus. Am J Respir Cell Mol Biol 2020;63:415-423.
  19. Heath WR, Carbone FR. Cross-presentation in viral immunity and self-tolerance. Nat Rev Immunol 2001;1:126-134.
  20. Gaevert JA, Luque Duque D, Lythe G, Molina-Paris C, Thomas PG. Quantifying T cell cross-reactivity: influenza and coronaviruses. Viruses 2021;13:1786.
  21. Embgenbroich M, Burgdorf S. Current concepts of antigen cross-presentation. Front Immunol 2018;9:1643.
  22. Hashimoto M, Kamphorst AO, Im SJ, Kissick HT, Pillai RN, Ramalingam SS, Araki K, Ahmed R. CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions. Annu Rev Med 2018;69:301-318.
  23. Duan S, Thomas PG. Balancing immune protection and immune pathology by CD8+ T-cell responses to influenza infection. Front Immunol 2016;7:25.
  24. Topham DJ, DeDiego ML, Nogales A, Sangster MY, Sant A. Immunity to influenza infection in humans. Cold Spring Harb Perspect Med 2021;11:a038729.
  25. Frank K, Paust S. Dynamic natural killer cell and T cell responses to influenza infection. Front Cell Infect Microbiol 2020;10:425.
  26. Okoli GN, Racovitan F, Abdulwahid T, Righolt CH, Mahmud SM. Variable seasonal influenza vaccine effectiveness across geographical regions, age groups and levels of vaccine antigenic similarity with circulating virus strains: a systematic review and meta-analysis of the evidence from test-negative design studies after the 2009/10 influenza pandemic. Vaccine 2021;39:1225-1240.
  27. Chang D, Zaia J. Why glycosylation matters in building a better flu vaccine. Mol Cell Proteomics 2019;18:2348-2358.
  28. Clemens EB, van de Sandt C, Wong SS, Wakim LM, Valkenburg SA. Harnessing the power of T cells: the promising hope for a universal influenza vaccine. Vaccines (Basel) 2018;6:18.
  29. Uddback I, Kohlmeier JE, Thomsen AR, Christensen JP. Harnessing cross-reactive CD8+ TRM cells for longstanding protection against influenza A virus. Viral Immunol 2020;33:201-207.
  30. Assarsson E, Bui HH, Sidney J, Zhang Q, Glenn J, Oseroff C, Mbawuike IN, Alexander J, Newman MJ, Grey H, et al. Immunomic analysis of the repertoire of T-cell specificities for influenza A virus in humans. J Virol 2008;82:12241-12251.
  31. McGee MC, Huang W. Evolutionary conservation and positive selection of influenza A nucleoprotein CTL epitopes for universal vaccination. J Med Virol 2022;94:2578-2587.
  32. Sui Z, Chen Q, Fang F, Zheng M, Chen Z. Cross-protection against influenza virus infection by intranasal administration of M1-based vaccine with chitosan as an adjuvant. Vaccine 2010;28:7690-7698.
  33. Rak A, Isakova-Sivak I, Rudenko L. Nucleoprotein as a promising antigen for broadly protective influenza vaccines. Vaccines (Basel) 2023;11:1747.
  34. Uddback IE, Steffensen MA, Pedersen SR, Nazerai L, Thomsen AR, Christensen JP. PB1 as a potential target for increasing the breadth of T-cell mediated immunity to Influenza A. Sci Rep 2016;6:35033.
  35. van de Wall S, Badovinac VP, Harty JT. Influenza-specific lung-resident memory CD8+ T cells. Cold Spring Harb Perspect Biol 2021;13:a037978.
  36. Paik DH, Farber DL. Influenza infection fortifies local lymph nodes to promote lung-resident heterosubtypic immunity. J Exp Med 2021;218:e20200218.
  37. Brown LE, Kelso A. Prospects for an influenza vaccine that induces cross-protective cytotoxic T lymphocytes. Immunol Cell Biol 2009;87:300-308.
  38. Mbawuike IN, Zhang Y, Couch RB. Control of mucosal virus infection by influenza nucleoprotein-specific CD8+ cytotoxic T lymphocytes. Respir Res 2007;8:44.
  39. Stanekova Z, Vareckova E. Conserved epitopes of influenza A virus inducing protective immunity and their prospects for universal vaccine development. Virol J 2010;7:351.
  40. Pizzolla A, Wakim LM. Memory T cell dynamics in the lung during influenza virus infection. J Immunol 2019;202:374-381.
  41. Wu T, Hu Y, Lee YT, Bouchard KR, Benechet A, Khanna K, Cauley LS. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J Leukoc Biol 2014;95:215-224.
  42. Son YM, Sun J. Co-ordination of mucosal B cell and CD8 T cell memory by tissue-resident CD4 helper T cells. Cells 2021;10:2355.
  43. Janssens Y, Joye J, Waerlop G, Clement F, Leroux-Roels G, Leroux-Roels I. The role of cell-mediated immunity against influenza and its implications for vaccine evaluation. Front Immunol 2022;13:959379.
  44. Park SL, Zaid A, Hor JL, Christo SN, Prier JE, Davies B, Alexandre YO, Gregory JL, Russell TA, Gebhardt T, et al. Local proliferation maintains a stable pool of tissue-resident memory T cells after antiviral recall responses. Nat Immunol 2018;19:183-191.
  45. Sant AJ, DiPiazza AT, Nayak JL, Rattan A, Richards KA. CD4 T cells in protection from influenza virus: Viral antigen specificity and functional potential. Immunol Rev 2018;284:91-105.
  46. Choi H, Lee HJ, Sohn HJ, Kim TG. CD40 ligand stimulation affects the number and memory phenotypes of human peripheral CD8+ T cells. BMC Immunol 2023;24:15.
  47. Kervevan J, Chakrabarti LA. Role of CD4+ T cells in the control of viral infections: recent advances and open questions. Int J Mol Sci 2021;22:523.
  48. Laidlaw BJ, Craft JE, Kaech SM. The multifaceted role of CD4+ T cells in CD8+ T cell memory. Nat Rev Immunol 2016;16:102-111.
  49. Cullen JG, McQuilten HA, Quinn KM, Olshansky M, Russ BE, Morey A, Wei S, Prier JE, La Gruta NL, Doherty PC, et al. CD4+ T help promotes influenza virus-specific CD8+ T cell memory by limiting metabolic dysfunction. Proc Natl Acad Sci U S A 2019;116:4481-4488.
  50. Janssen EM, Droin NM, Lemmens EE, Pinkoski MJ, Bensinger SJ, Ehst BD, Griffith TS, Green DR, Schoenberger SP. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 2005;434:88-93.
  51. Fuse S, Tsai CY, Molloy MJ, Allie SR, Zhang W, Yagita H, Usherwood EJ. Recall responses by helpless memory CD8+ T cells are restricted by the up-regulation of PD-1. J Immunol 2009;182:4244-4254.
  52. Townsend AR, Rothbard J, Gotch FM, Bahadur G, Wraith D, McMichael AJ. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 1986;44:959-968.
  53. Zhou X, Abdel Motal UM, Berg L, Jondal M. In vivo priming of cytotoxic T lymphocyte responses in relation to in vitro up-regulation of major histocompatibility complex class I molecules by short synthetic peptides. Eur J Immunol 1992;22:3085-3090.
  54. Crowe SR, Miller SC, Shenyo RM, Woodland DL. Vaccination with an acidic polymerase epitope of influenza virus elicits a potent antiviral T cell response but delayed clearance of an influenza virus challenge. J Immunol 2005;174:696-701.
  55. Mbow ML, De Gregorio E, Valiante NM, Rappuoli R. New adjuvants for human vaccines. Curr Opin Immunol 2010;22:411-416.
  56. MacLeod MK, McKee AS, David A, Wang J, Mason R, Kappler JW, Marrack P. Vaccine adjuvants aluminum and monophosphoryl lipid A provide distinct signals to generate protective cytotoxic memory CD8 T cells. Proc Natl Acad Sci U S A 2011;108:7914-7919.
  57. Mascaraque A, Kowalczyk W, Fernandez T, Palomares F, Mayorga C, Andreu D, Rojo J. Glycodendropeptides stimulate dendritic cell maturation and T cell proliferation: a potential influenza A virus immunotherapy. MedChemComm 2015;6:1755-1760.
  58. van der Zande HJ, Nitsche D, Schlautmann L, Guigas B, Burgdorf S. The mannose receptor: from endocytic receptor and biomarker to regulator of (meta)inflammation. Front Immunol 2021;12:765034.
  59. Zhang H, Zheng H, Guo P, Hu L, Wang Z, Wang J, Ju Y, Meng S. Broadly protective CD8+ T cell immunity to highly conserved epitopes elicited by heat shock protein gp96-adjuvanted influenza monovalent split vaccine. J Virol 2021;95:e00507-21.
  60. Singh-Jasuja H, Toes RE, Spee P, Munz C, Hilf N, Schoenberger SP, Ricciardi-Castagnoli P, Neefjes J, Rammensee HG, Arnold-Schild D, et al. Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J Exp Med 2000;191:1965-1974.
  61. Ju Y, Fan H, Liu J, Hu J, Li X, Li C, Chen L, Gao Q, Gao GF, Meng S. Heat shock protein gp96 adjuvant induces T cell responses and cross-protection to a split influenza vaccine. Vaccine 2014;32:2703-2711.
  62. Restuccia A, Hudalla GA. Tuning carbohydrate density enhances protein binding and inhibition by glycosylated β-sheet peptide nanofibers. Biomater Sci 2018;6:2327-2335.
  63. Si Y, Wen Y, Kelly SH, Chong AS, Collier JH. Intranasal delivery of adjuvant-free peptide nanofibers elicits resident CD8+ T cell responses. J Control Release 2018;282:120-130.
  64. Si Y, Tian Q, Zhao F, Kelly SH, Shores LS, Camacho DF, Sperling AI, Andrade MS, Collier JH, Chong AS. Adjuvant-free nanofiber vaccine induces in situ lung dendritic cell activation and TH17 responses. Sci Adv 2020;6:eaba0995.
  65. Tate MD, Ong JD, Dowling JK, McAuley JL, Robertson AB, Latz E, Drummond GR, Cooper MA, Hertzog PJ, Mansell A. Reassessing the role of the NLRP3 inflammasome during pathogenic influenza A virus infection via temporal inhibition. Sci Rep 2016;6:27912.
  66. Belz GT, Xie W, Doherty PC. Diversity of epitope and cytokine profiles for primary and secondary influenza a virus-specific CD8+ T cell responses. J Immunol 2001;166:4627-4633.
  67. Zhong W, Reche PA, Lai CC, Reinhold B, Reinherz EL. Genome-wide characterization of a viral cytotoxic T lymphocyte epitope repertoire. J Biol Chem 2003;278:45135-45144.
  68. Arrieta-Bolanos E, Hernandez-Zaragoza DI, Barquera R. An HLA map of the world: a comparison of HLA frequencies in 200 worldwide populations reveals diverse patterns for class I and class II. Front Genet 2023;14:866407.
  69. Valkenburg SA, Josephs TM, Clemens EB, Grant EJ, Nguyen TH, Wang GC, Price DA, Miller A, Tong SY, Thomas PG, et al. Molecular basis for universal HLA-A*0201-restricted CD8+ T-cell immunity against influenza viruses. Proc Natl Acad Sci U S A 2016;113:4440-4445.
  70. Gianfrani C, Oseroff C, Sidney J, Chesnut RW, Sette A. Human memory CTL response specific for influenza A virus is broad and multispecific. Hum Immunol 2000;61:438-452.
  71. Choo JA, Liu J, Toh X, Grotenbreg GM, Ren EC. The immunodominant influenza A virus M158-66 cytotoxic T lymphocyte epitope exhibits degenerate class I major histocompatibility complex restriction in humans. J Virol 2014;88:10613-10623.
  72. Aktas E, Kucuksezer UC, Bilgic S, Erten G, Deniz G. Relationship between CD107a expression and cytotoxic activity. Cell Immunol 2009;254:149-154.
  73. Koutsakos M, Illing PT, Nguyen TH, Mifsud NA, Crawford JC, Rizzetto S, Eltahla AA, Clemens EB, Sant S, Chua BY, et al. Human CD8+ T cell cross-reactivity across influenza A, B and C viruses. Nat Immunol 2019;20:613-625.
  74. Budimir N, de Haan A, Meijerhof T, Waijer S, Boon L, Gostick E, Price DA, Wilschut J, Huckriede A. Critical role of TLR7 signaling in the priming of cross-protective cytotoxic T lymphocyte responses by a whole inactivated influenza virus vaccine. PLoS One 2013;8:e63163.
  75. Soema PC, Rosendahl Huber SK, Willems GJ, Jacobi R, Hendriks M, Soethout E, Jiskoot W, de Jonge J, van Beek J, Kersten GF, et al. Whole-inactivated influenza virus is a potent adjuvant for influenza peptides containing CD8+ T cell epitopes. Front Immunol 2018;9:525.
  76. Grant E, Wu C, Chan KF, Eckle S, Bharadwaj M, Zou QM, Kedzierska K, Chen W. Nucleoprotein of influenza A virus is a major target of immunodominant CD8+ T-cell responses. Immunol Cell Biol 2013;91:184-194.
  77. van de Sandt CE, Clemens EB, Grant EJ, Rowntree LC, Sant S, Halim H, Crowe J, Cheng AC, Kotsimbos TC, Richards M, et al. Challenging immunodominance of influenza-specific CD8+ T cell responses restricted by the risk-associated HLA-A*68:01 allomorph. Nat Commun 2019;10:5579.
  78. DiBrino M, Tsuchida T, Turner RV, Parker KC, Coligan JE, Biddison WE. HLA-A1 and HLA-A3 T cell epitopes derived from influenza virus proteins predicted from peptide binding motifs. J Immunol 1993;151:5930-5935.
  79. Bolze A, Neveux I, Schiabor Barrett KM, White S, Isaksson M, Dabe S, Lee W, Grzymski JJ, Washington NL, Cirulli ET. HLA-A*03:01 is associated with increased risk of fever, chills, and stronger side effects from Pfizer-BioNTech COVID-19 vaccination. HGG Adv 2022;3:100084.
  80. Solberg OD, Mack SJ, Lancaster AK, Single RM, Tsai Y, Sanchez-Mazas A, Thomson G. Balancing selection and heterogeneity across the classical human leukocyte antigen loci: a meta-analytic review of 497 population studies. Hum Immunol 2008;69:443-464.
  81. Quinones-Parra S, Grant E, Loh L, Nguyen TH, Campbell KA, Tong SY, Miller A, Doherty PC, Vijaykrishna D, Rossjohn J, et al. Preexisting CD8+ T-cell immunity to the H7N9 influenza A virus varies across ethnicities. Proc Natl Acad Sci U S A 2014;111:1049-1054.
  82. Nguyen AT, Lau HM, Sloane H, Jayasinghe D, Mifsud NA, Chatzileontiadou DS, Grant EJ, Szeto C, Gras S. Homologous peptides derived from influenza A, B and C viruses induce variable CD8+ T cell responses with cross-reactive potential. Clin Transl Immunology 2022;11:e1422.
  83. Grant EJ, Josephs TM, Loh L, Clemens EB, Sant S, Bharadwaj M, Chen W, Rossjohn J, Gras S, Kedzierska K. Broad CD8+ T cell cross-recognition of distinct influenza A strains in humans. Nat Commun 2018;9:5427.
  84. Rimmelzwaan GF, Boon AC, Voeten JT, Berkhoff EG, Fouchier RA, Osterhaus AD. Sequence variation in the influenza A virus nucleoprotein associated with escape from cytotoxic T lymphocytes. Virus Res 2004;103:97-100.
  85. Muraduzzaman AK, Illing PT, Mifsud NA, Purcell AW. Understanding the role of HLA class I molecules in the immune response to influenza infection and rational design of a peptide-based vaccine. Viruses 2022;14:2578.
  86. Sant S, Quinones-Parra SM, Koutsakos M, Grant EJ, Loudovaris T, Mannering SI, Crowe J, van de Sandt CE, Rimmelzwaan GF, Rossjohn J, et al. HLA-B*27:05 alters immunodominance hierarchy of universal influenza-specific CD8+ T cells. PLoS Pathog 2020;16:e1008714.
  87. Rosendahl Huber SK, Luimstra JJ, van Beek J, Hoppes R, Jacobi RH, Hendriks M, Kapteijn K, Ouwerkerk C, Rodenko B, Ovaa H, et al. Chemical modification of influenza CD8+ T-cell epitopes enhances their immunogenicity regardless of immunodominance. PLoS One 2016;11:e0156462.
  88. Keskin DB, Reinhold BB, Zhang GL, Ivanov AR, Karger BL, Reinherz EL. Physical detection of influenza A epitopes identifies a stealth subset on human lung epithelium evading natural CD8 immunity. Proc Natl Acad Sci U S A 2015;112:2151-2156.
  89. Chandele A, Sewatanon J, Gunisetty S, Singla M, Onlamoon N, Akondy RS, Kissick HT, Nayak K, Reddy ES, Kalam H, et al. Characterization of human CD8 T cell responses in dengue virus-infected patients from India. J Virol 2016;90:11259-11278.
  90. Hensen L, Illing PT, Bridie Clemens E, Nguyen TH, Koutsakos M, van de Sandt CE, Mifsud NA, Nguyen AT, Szeto C, Chua BY, et al. CD8+ T cell landscape in Indigenous and non-Indigenous people restricted by influenza mortality-associated HLA-A*24:02 allomorph. Nat Commun 2021;12:2931.
  91. Alexander J, Bilsel P, del Guercio MF, Marinkovic-Petrovic A, Southwood S, Stewart S, Ishioka G, Kotturi MF, Botten J, Sidney J, et al. Identification of broad binding class I HLA supertype epitopes to provide universal coverage of influenza A virus. Hum Immunol 2010;71:468-474.
  92. Liu J, Zhang S, Tan S, Yi Y, Wu B, Cao B, Zhu F, Wang C, Wang H, Qi J, et al. Cross-allele cytotoxic T lymphocyte responses against 2009 pandemic H1N1 influenza A virus among HLA-A24 and HLA-A3 supertype-positive individuals. J Virol 2012;86:13281-13294.
  93. Kim SH, Park JH, Lee SJ, Lee HS, Jung JK, Lee YR, Cho HI, Kim JK, Kim K, Park CS, et al. Efficient anti-tumor immunotherapy using tumor epitope-coated biodegradable nanoparticles combined with polyinosinic-polycytidylic acid and an anti-PD1 monoclonal antibody. Immune Netw 2022;22:e42.
  94. Slingluff CL Jr. The present and future of peptide vaccines for cancer: single or multiple, long or short, alone or in combination? Cancer J 2011;17:343-350.
  95. Heng WT, Lim HX, Tan KO, Poh CL. Validation of multi-epitope peptides encapsulated in PLGA nanoparticles against influenza A virus. Pharm Res 2023;40:1999-2025.
  96. Lin PH, Liang CY, Yao BY, Chen HW, Pan CF, Wu LL, Lin YH, Hsu YS, Liu YH, Chen PJ, et al. Robust induction of TRMs by combinatorial nanoshells confers cross-strain sterilizing immunity against lethal influenza viruses. Mol Ther Methods Clin Dev 2021;21:299-314.
  97. Khalaj-Hedayati A, Chua CL, Smooker P, Lee KW. Nanoparticles in influenza subunit vaccine development: Immunogenicity enhancement. Influenza Other Respi Viruses 2020;14:92-101.
  98. Kim SH, Park HE, Jeong SU, Moon JH, Lee YR, Kim JK, Kong H, Park CS, Lee CK. Induction of peptide-specific CTL activity and inhibition of tumor growth following immunization with nanoparticles coated with tumor peptide-MHC-I complexes. Immune Netw 2021;21:e44.
  99. Lanfermeijer J, van de Ven K, van Dijken H, Hendriks M, Talavera Ormeno CM, de Heij F, Roholl P, Borghans JA, van Baarle D, de Jonge J. Modified influenza M158-66 peptide vaccination induces non-relevant T-cells and may enhance pathology after challenge. NPJ Vaccines 2023;8:116.
  100. Habel JR, Nguyen AT, Rowntree LC, Szeto C, Mifsud NA, Clemens EB, Loh L, Chen W, Rockman S, Nelson J, et al. HLA-A*11:01-restricted CD8+ T cell immunity against influenza A and influenza B viruses in Indigenous and non-Indigenous people. PLoS Pathog 2022;18:e1010337.