DOI QR코드

DOI QR Code

Analyzing lateral strength and failure modes in masonry infill frames: A mesoscale study

  • Sina GanjiMorad (Department of Civil engineering, Kermanshah branch, Islamic Azad University) ;
  • Ali Permanoon (Department of Civil Engineering, Faculty Engineering, Razi University) ;
  • Maysam Azadi (Department of Civil Engineering, Faculty Engineering, Razi University)
  • 투고 : 2023.11.02
  • 심사 : 2024.05.24
  • 발행 : 2024.08.25

초록

In this study, the failure mechanisms of masonry-infilled frames, commonly employed in modern construction, are analyzed at the mesoscale. An equation has been formulated to predict various failure modes of masonry-infilled frames by examining 1392 frames. The equation takes into account variables such as the height-to-width ratio, compressive strength of the masonry prism, and plastic moment capacity of the frame section. The study reveals that the compressive strength of the masonry prism and the height-to-width ratio exert the most significant influence on the lateral strength of masonry-infilled frames with a height-to-width ratio ranging from 0.2 to 1.2. The developed equation demonstrates substantial agreement with previously reported relationships, indicating high accuracy. These findings provide valuable insights into the lateral strength of infill masonry frames, which can contribute to their improved evaluation and design.

키워드

참고문헌

  1. Akhaveissy, A.H. (2013), "Limit state strength of unreinforced masonry structures", Earthq. Spectra, 29(1), 1-31. https://doi.org/10.1193/1.4000097.
  2. Akhaveissy, A.H. (2021), "Numerical modeling of masonry wall under underground waves", Doctoral Dissertation, Bu-Ali Sina University, Hamedan, Iran.
  3. Alfano, G. and Crisfield, M. (2001), "Finite element interface models for the delamination analysis of laminated composites: Mechanical and computational issues", Int. J. Numer. Method. Eng., 50(7), 1701-1736. https://doi.org/10.1002/nme.93.
  4. Alguhane, T.M., Khalil, A.H., Fayed, M.N. and Ismail, A.M. (2015), "Seismic assessment of old existing RC buildings with masonry infill in Madinah as per ASCE", Int. J. Comput. Syst. Eng., 9(1), 52-63. https://doi.org/10.5281/zenodo.1099078.
  5. Arasaratnam, P., Sivakumaran, K.S. and Tait, M.J. (2011), "True stress-true strain models for structural steel elements", Int. Scholar. Res. Notice., 2011(1), 656401. https://doi.org/10.5402/2011/656401.
  6. Baloevic, G., Radnic, J., Grgic, N. and Grubisic, I. (2022), "Shake-table study on the effect of masonry infill on the seismic response of reinforced concrete frames", Soil Dyn. Earthq. Eng., 161, 107404. https://doi.org/10.1016/j.soildyn.2022.107404.
  7. Campione, G., Cavaleri, L., Macaluso, G., Amato, G. and Di Trapani, F. (2015), "Evaluation of infilled frames: An updated in-plane-stiffness macro-model considering the effects of vertical loads", Bull. Earthq. Eng., 13, 2265-2281. https://doi.org/10.1007/s10518-014-9714-x.
  8. Cavaleri, L. and Di Trapani, F. (2014), "Cyclic response of masonry infilled RC frames: Experimental results and simplified modeling", Soil Dyn. Earthq. Eng., 65, 224-242. https://doi.org/10.1016/j.soildyn.2014.06.016.
  9. Chisari, C., Macorini, L. and Izzuddin, B.A. (2021), "Mesoscale modeling of a masonry building subjected to earthquake loading", J. Struct. Eng., 147(1), 04020294. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002823.
  10. Chrysostomou, C.Z. and Asteris, P.G. (2012), "On the in-plane properties and capacities of infilled frames", Eng. Struct., 41, 385-402. https://doi.org/10.1016/j.engstruct.2012.03.057.
  11. Cohen, I., Huang, Y., Chen, J. and Benesty, J. (2009), "Pearson correlation coefficient", Noise Reduction in Speech Processing, Springer, Berlin, Heidelberg, Germany.
  12. Da Porto, F., Guidi, G., Dalla Benetta, M. and Verlato, N. (2013), "Combined in-plane/out-of-plane experimental behaviour of reinforced and strengthened infill masonry walls", 12th Canadian Masonry Symposium, Vancouver, Canada, June.
  13. Dautaj, A.D., Kadiri, Q. and Kabashi, N. (2018), "Experimental study on the contribution of masonry infill in the behavior of RC frame under seismic loading", Eng. Struct., 165, 27-37. https://doi.org/10.1016/j.engstruct.2018.03.013.
  14. Dhir, P.K., Tubaldi, E., Ahmadi, H. and Gough, J. (2021), "Numerical modelling of reinforced concrete frames with masonry infills and rubber joints", Eng. Struct., 246, 112833. https://doi.org/10.1016/j.engstruct.2021.112833.
  15. Di Trapani, F., Khan, N.A., Zhou, L., Demartino, C. and Monti, G. (2024), "Cyclic response of infilled RC frames with window and door openings: Experimental results and damage interpretation", Earthq. Eng. Struct. Dyn., 53(1), 43-67. https://doi.org/10.1002/eqe.4005.
  16. Dias-Oliveira, J., Rodrigues, H., Asteris, P.G. and Varum, H. (2022), "On the seismic behavior of masonry infilled frame structures", Build., 12(8), 1146. https://doi.org/10.3390/buildings12081146.
  17. Dilmac, H., Ulutas, H., Tekeli, H. and Demir, F. (2018), "The investigation of seismic performance of existing RC buildings with and without infill walls", Comput. Concrete, 22(5), 439-447. https://doi.org/10.12989/cac.2018.22.5.439.
  18. Dolatshahi, K.M. and Aref, A.J. (2011), "Two-dimensional computational framework of meso-scale rigid and line interface elements for masonry structures", Eng. Struct., 33(12), 3657-3667. https://doi.org/10.1016/j.engstruct.2011.07.030.
  19. Dolsek, M. and Fajfar, P. (2008), "The effect of masonry infills on the seismic response of a four-storey reinforced concrete frame-a deterministic assessment", Eng. Struct., 30(7), 1991-2001. https://doi.org/10.1016/j.engstruct.2008.01.001.
  20. Durand, R. and da Silva, F.H.B.T. (2019), "A Coulomb-based model to simulate concrete cracking using cohesive elements", Int. J. Fract., 220(1), 17-43. https://doi.org/10.1007/s10704-019-00395-5.
  21. Dymiotis, C., Kappos, A.J. and Chryssanthopoulos, M.K. (2001), "Seismic reliability of masonry-infilled RC frames", J. Struct. Eng., 127(3), 296-305. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:3(296).
  22. Fattahi, M., Malekshahi, M. and Permanoon, A. (2024), "Mesoscale numerical modeling of unreinforced masonry wall response to underground dynamic loads: A comparative study utilizing FEM and DEM", Struct., 63, 106460. https://doi.org/10.1016/j.istruc.2024.106460.
  23. Flanagan, R.D., Bennett, R.M., Fischer, W.L. and Adham, S.A. (1996), "Masonry infill performance during the Northridge earthquake", Oak Ridge Y-12 Plant (Y-12); National Science Foundation, Washington, D.C., USA.
  24. Flanagan, R.D. and Bennett, R.M. (2001), "In-plane analysis of masonry infill materials", Pract. Period. Struct. Des. Constr., 6(4), 176-182. https://doi.org/10.1061/(asce)1084-0680(2001)6:4(176).
  25. Hapsari, I.R., Kristiawan, S.A., Sangadji, S. and Gan, B.S. (2023), "Damage states investigation of infilled frame structure based on meso modeling approach", Build., 13(2), 298. https://doi.org/10.3390/buildings13020298.
  26. Hognestad, E. (1951), "Study of combined bending and axial load in reinforced concrete members", Bulletin, No. 399, Engineering Experiment Station, University of Illinois, Champaign, IL, USA.
  27. Kappos, A.J., Stylianidis, K.C. and Michailidis, C.N. (1998), "Analytical models for brick masonry infilled R/C frames under lateral loading", J. Earthq. Eng., 2(1), 59-87. https://doi.org/10.1080/13632469809350314.
  28. Kendall, M.G. (1943), "The advanced theory of statistics", 1, 457. https://doi.org/10.2307/2344782.
  29. Kim, M. and Yu, E. (2021), "Experimental study on lateral-load-resisting capacity of masonry-infilled reinforced concrete frames", Appl. Sci., 11(21), 9950. https://doi.org/10.3390/app11219950.
  30. Lasciarrea, W.G., Amorosi, A., Boldini, D., de Felice, G. and Malena, M. (2019), "Jointed masonry model: A constitutive law for 3D soil-structure interaction analysis", Eng. Struct., 201, 109803. https://doi.org/10.1016/j.engstruct.2019.109803.
  31. Lee, S.J., Eom, T.S. and Yu, E. (2021), "Investigation of diagonal strut actions in masonry-infilled reinforced concrete frames", Int. J. Concrete Struct. Mater., 15, 1-14. https://doi.org/10.1186/s40069-020-00440-x.
  32. Liauw, T.C. and Kwan, K.H. (1983), "Plastic theory of non integral infilled frames", Proc. Inst. Civil Eng., 75(3), 379-396. https://doi.org/10.1680/iicep.1983.1437.
  33. Liberatore, L., Noto, F., Mollaioli, F. and Franchin, P. (2018), "In-plane response of masonry infill walls: Comprehensive experimentally-based equivalent strut model for deterministic and probabilistic analysis", Eng. Struct., 167, 533-548. https://doi.org/10.1016/j.engstruct.2018.04.057.
  34. Lima, C., De Stefano, G. and Martinelli, E. (2014), "Seismic response of masonry infilled RC frames: Practice-oriented models and open issues", Earthq. Struct., 6(4), 409. https://doi.org/10.12989/eas.2014.6.4.409.
  35. Lourenco, P.B., Rots, J.G. and Blaauwendraad, J. (1998), "Continuum model for masonry: Parameter estimation and validation", J. Struct. Eng., 124(6), 642-652. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:6(642).
  36. Macorini, L, and Izzuddin, B.A. (2011), "A non-linear interface element for 3D mesoscale analysis of brick-masonry structures", Int. J. Numer. Method. Eng., 85(12), 1584-1608. https://doi.org/10.1002/nme.3046.
  37. Madan, A., Reinhorn, A.M., Mander, J.B. and Valles, R.E. (1997), "Modeling of masonry infill panels for structural analysis", J. Struct. Eng., 123(10), 1295-1302. https://doi.org/10.1016/j.engstruct.2015.07.023.
  38. Mainstone, R.J. (1971), "On the stiffness and strength of infilled frames", Proc. Inst. Civil Eng., 49, 57.
  39. Manos, G.C., Soulis, V.J. and Thauampteh, J. (2012), "A nonlinear numerical model and its utilization in simulating the in-plane behaviour of multi-story R/C frames with masonry infills", Open Constr. Build. Technol. J., 6(1), 1. http://doi.org/10.2174/1874836801206010254.
  40. Martinelli, E., Lima, C. and De Stefano, G. (2015), "A simplified procedure for Nonlinear Static analysis of masonry infilled RC frames", Eng. Struct., 101, 591-608. https://doi.org/10.1016/j.engstruct.2015.07.023.
  41. Menetrey, P. and Willam, K.J. (1995), "Triaxial failure criterion for concrete and its generalization", Struct. J., 92(3), 311-318. http://doi.org/10.14359/1132.
  42. Messaoudi, A., Chebili, R., Mohamed, H. and Rodrigues, H. (2022), "Influence of masonry infill wall position and openings in the seismic response of reinforced concrete frames", Appl. Sci., 12(19), 9477. https://doi.org/10.3390/app12199477.
  43. Milani, G., Lourenco, P.B. and Tralli, A. (2006a), "Homogenised limit analysis of masonry walls Part I: Failure surfaces", Comput. Struct., 84(3), 166-180. https://doi.org/10.1016/j.compstruc.2005.09.005.
  44. Milani, G., Lourenco, P.B. and Tralli, A. (2006b), "Homogenised limit analysis of masonry walls, Part II: Structural examples", Comput. Struct., 84(3), 181-195. https://doi.org/10.1016/j.compstruc.2005.09.004.
  45. Milani, G., Lourenco, P.B. and Tralli, A. (2009), "Homogenized rigid-plastic model for masonry walls subjected to impact", Int. J. Solid. Struct., 46(22-23), 4133-4149. https://doi.org/10.1016/j.ijsolstr.2009.08.007.
  46. Minga, E., Macorini, L., Izzuddin, B.A. and Calio, I. (2020), "3D macroelement approach for nonlinear FE analysis of URM components subjected to in-plane and out-of-plane cyclic loading", Eng. Struct., 220, 110951. https://doi.org/10.1016/j.engstruct.2020.110951.
  47. Mohammadi Nikoo, M., Akhaveissy, A.H. and Permanoon, A. (2021), "An investigation of performance of masonry wall reinforced with timber lumbers", J. Rehabilitat. Civil Eng., 9(1), 114-138. https://doi.org/10.22075/JRCE.2020.13379.1243.
  48. Mulgund, G.V. and Kulkarni, A.B. (2011), "Seismic assessment of RC frame buildings with brick masonry infills", Int. J. Adv. Eng. Sci. Technol., 2(2), 140-147.
  49. Occhipinti, G., Calio, I., D'Altri, A.M., Grillanda, N., de Miranda, S., Milani, G. and Spacone, E. (2022), "Nonlinear finite and discrete element simulations of multi-storey masonry walls", Bull. Earthq. Eng., 20(4), 2219-2244. https://doi.org/10.1007/s10518-021-01233-7.
  50. Peng, S., Sbartai, Z.M. and Parent, T. (2020), "Mechanical damage evaluation of masonry under tensile loading by acoustic emission technique", Constr. Build. Mater., 258, 120336. https://doi.org/10.1016/j.conbuildmat.2020.120336.
  51. Permanoon, A. and Akhaveissy, A.H. (2022a), "An investigation of meso-scale crack propagation process in concrete beams using topology optimization", Amirkabir J. Civil Eng., 53(12), 5281-5306. https://doi.org/10.22060/ceej.2021.18771.6958.
  52. Permanoon, A. and Akhaveissy, A.H. (2019), "Effects of mesoscale modeling on concrete fracture parameters calculation", Period. Polytech. Civil Eng., 63(3), 782-794. https://doi.org/10.3311/PPci.13874.
  53. Permanoon, A. and Akhaveissy, A.H. (2020), "A computational study of effect of thickness on mild steel fracture", Adv. Civil Eng. Mater., 9(1), 340-357. https://doi.org/10.1520/ACEM20190177.
  54. Permanoon, A. and Akhaveissy, A.H. (2022b), "Failure of existing structures with semi-brittle mechanical properties on meso scale and reduction of computational cost using non-linear topology optimization", Constr. Build. Mater., 319, 126071. https://doi.org/10.1016/j.conbuildmat.2021.126071.
  55. Pradhan, B., Zizzo, M., Sarhosis, V. and Cavaleri, L. (2021), "Out-of-plane behaviour of unreinforced masonry infill walls: Review of the experimental studies and analysis of the influencing parameters", Struct., 33, 4387-4406. https://doi.org/10.1016/j.istruc.2021.07.038.
  56. Pul, S. and Arslan, M.E. (2019), "Cyclic behaviors of different type of hollow brick infill walls: A hinged rigid frame approach", Constr. Build. Mater., 211, 899-908. https://doi.org/10.1016/j.conbuildmat.2019.03.285.
  57. Raeisi, R., Rezaie, F. and Permanoon, A. (2021), "Meso-scale modeling of concrete fracture by considering the aggregates and voids effect", EFFLATOUNIA-Multidiscipl. J., 5(2), 1.
  58. Rahbar, E., Permanoon, A. and Akhaveissy, A.H. (2023), "Numerical evaluation of masonry-infill frames: Analysis of lateral strength and failure modes on meso scale", Struct., 52, 779-793. https://doi.org/10.1016/j.istruc.2023.04.026.
  59. Rots, J.G. (1994), Structural Masonry: An Experimental/Numerical Basis for Practical Design Rules, CRC Press, London, UK.
  60. Shendkar, M.R., Kontoni, D.P.N., Isik, E., Mandal, S., Maiti, P.R. and Harirchian, E. (2022), "Influence of masonry infill on seismic design factors of reinforced-concrete buildings", Shock Vib., 2022, 5521162. https://doi.org/10.1155/2022/5521162.
  61. Shi, Y., Wang, N., Li, Z.X. and Ding, Y. (2021), "Experimental studies on the dynamic compressive and tensile strength of clay brick under high strain rates", Constr. Build. Mater., 272, 121908. https://doi.org/10.1016/j.engstruct.2020.110951.
  62. Simo, J.C. and Hughes, T.J. (2006), Computational Inelasticity, Springer Science & Business Media, Berlin, Germany.
  63. Spearman, C. (1961), "The proof and measurement of association between two things", Studies in Individual Differences: The Search for Intelligence, Appleton-Century-Crofts, New York, NY, USA.
  64. Stafford Smith, B. and Carter, C. (1969), "A method of analysis for infilled frames", Proc. Inst. Civil Eng., 44(1), 31-48. https://doi.org/10.1680/iicep.1969.7290.
  65. Suzuki, T., Choi, H., Sanada, Y., Nakano, Y., Matsukawa, K., Paul, D., ... and Binici, B. (2017), "Experimental evaluation of the in-plane behaviour of masonry wall infilled RC frames", Bull. Earthq. Eng., 15, 4245-4267. https://doi.org/10.1007/s10518-017-0139-1.
  66. Thamboo, J., Bandara, J., Perera, S., Navaratnam, S., Poologanathan, K. and Corradi, M. (2020), "Experimental and analytical study of masonry subjected to uniaxial cyclic compression", Mater., 13(20), 4505. https://doi.org/10.3390/ma13204505.
  67. Tucker, C.J. (2007) "Predicting the in-plane capacity of masonry infilled frames", Ph.D. Dissertation, Tennessee Technological University, Cookeville, TN, USA.
  68. Uva, G., Porco, F. and Fiore, A. (2012), "Appraisal of masonry infill walls effect in the seismic response of RC framed buildings: A case study", Eng. Struct., 34, 514-526. https://doi.org/10.1016/j.engstruct.2011.08.043.
  69. Uva, G., Tateo, V. and Casolo, S. (2020), "Presentation and validation of a specific RBSM approach for the meso-scale modelling of in-plane masonry-infills in RC frames", Int. J. Mason. Res. Innov., 5(3), 366-395. https://doi.org/10.1504/IJMRI.2020.107995.
  70. Valiasis, T. (1989), "Experimental investigation of the behaviour of R/C frames filled with masonry panels and subjected cyclic horizontal load-analytical modelling of the masonry panel", Ph.D. Dissertation, Aristotle University of Thessaloniki, Thessaloniki, Greece.