References
- Alam, N., Alam, M.S. and Tesfamariam, S. (2012), "Buildings seismic vulnerability assessment methods: A comparative study", Nat. hazard., 62, 405-424. https://doi.org/10.1007/s11069-011-0082-4.
- Bansal, A. and Jain, A. (2021), "Analysis of focussed under-sampling techniques with machine learing classifiers", 2021 IEEE/ACIS 19th International Conference on Software Engineering Research, Management and Applications (SERA), Kanazawa, Japan, June.
- Barbat, A.H., Carreno, M.L., Pujades, L.G., Lantada, N., Cardona, O.D. and Marulanda, M.C. (2010), "Seismic vulnerability and risk evaluation methods for urban areas. A review with application to a pilot area", Struct. Infrastr. Eng., 6(1-2), 17-38. https://doi.org/10.1080/15732470802663763.
- Bergstra, J. and Bengio, Y. (2012), "Random search for hyper-parameter optimization", J. Mach. Learn. Res., 13(2), 281-305. https://doi.org/10.5555/2503308.2188395.
- Brena, M. and Batagelj, V. (2006), "The metric index", Croatica Chem. Acta, 79(3), 399-410.
- Buckland, M. and Gey, F. (1994), "The relationship between recall and precision", J. Am. Soc. Informat. Sci., 45(1), 12-19. https://doi.org/10.1002/(SICI)1097-4571(199401)45:1%3C12::AID-ASI2%3E3.0.CO;2-L.
- Cicirello, V.A. (2019), "Kendall tau sequence distance: Extending Kendall tau from ranks to sequences", arXiv preprint, 2019, arXiv:1905.02752. https://doi.org/10.48550/arXiv.1905.02752.
- Cunningham, P. and Delany, S.J. (2021), "K-nearest neighbour classifiers-a tutorial", ACM Comput. Survey. (CSUR), 54(6), 1-25. https://doi.org/10.1145/3459665.
- EAK 2000 (2000), Greek Code for Seismic Resistant Structures, https://iisee.kenken.go.jp/worldlist/23_Greece/23_Greece_Code.pdf
- Facchinei, F., Fischer, A. and Kanzow, C. (1998), "On the accurate identification of active constraints", SIAM J. Optimizat., 9(1), 14-32. https://doi.org/10.1137/S1052623496305882.
- Fawagreh, K., Gaber, M.M. and Elyan, E. (2014), "Random forests: From early developments to recent advancements", Syst. Sci. Control Eng.: Open Access J., 2(1), 602-609. https://doi.org/10.1080/21642583.2014.956265.
- Geurts, P., Ernst, D. and Wehenkel, L. (2006), "Extremely randomized trees", Mach. Learn., 63, 3-42. https://doi.org/10.1007/s10994-006-6226-1.
- Ghasemi, S.H., Bahrami, H. and Akbari, M. (2020), "Classification of seismic vulnerability based on machine learning techniques for RC frames", J. Soft Comput. Civil Eng., 4, 13-21. https://doi.org/10.22115/scce.2020.223322.1186.
- Gutierrez, P.A., Perez-Ortiz, M., Sanchez-Monedero, J., Fernandez-Navarro, F. and Hervas-Martinez, C. (2015), "Ordinal regression methods: survey and experimental study", IEEE Trans. Knowled. Data Eng., 28(1), 127-146. https://doi.org/10.1109/TKDE.2015.2457911.
- Harirchian, E. and Lahmer, T. (2020), "Improved rapid assessment of earthquake hazard safety of structures via artificial neural networks", IOP Conf. Ser.: Mater. Sci. Eng., 897(1), 012014. https://doi.org/10.1088/1757-899X/897/1/012014.
- Harirchian, E., Kumari, V., Jadhav, K., Raj Das, R., Rasulzade, S. and Lahmer, T. (2020), "A machine learning framework for assessing seismic hazard safety of reinforced concrete buildings", Appl. Sci., 10(20), 7153. https://doi.org/10.3390/app10207153.
- Harirchian, E., Kumari, V., Jadhav, K., Rasulzade, S., Lahmer, T. and Raj Das, R. (2021), "A synthesized study based on machine learning approaches for rapid classifying earthquake damage grades to RC buildings", Appl. Sci., 1(16), 7540. https://doi.org/10.3390/app11167540.
- Herbrich, R. (1999), "Support vector learning for ordinal regression", 9th International Conference on Artificial Neural Networks: ICANN '99, Edinburgh, UK, September.
- Hossain, R. and Timmer, D. (2021), "Machine learning model optimization with hyper parameter tuning approach", Glob. J. Comput. Sci. Technol. D Neural Artif. Intell., 21(2), 7-13.
- Impedovo, S. and Mangini, F.M. (2012), "A novel technique for handwritten digit classification using genetic clustering", 2012 International Conference on Frontiers in Handwriting Recognition, Bari, Italy, September.
- Karabinis, A. (2004), Calibration of Rapid Visual Screening in Reinforced Concrete Structures Based on Data after a Near Field Earthquake (7.9. 1999 Athens - Greece), School of Civil Engineers, Reinforced Concrete Laboratory, Zografos, Attica, Greece.
- Karampinis, I. and Iliadis, L. (2023), "A machine learning approach for seismic vulnerability ranking" International Conference on Engineering Applications of Neural Networks, Springer Nature, Cham Switzerland.
- Kosub, S. (2019), "A note on the triangle inequality for the Jaccard distance", Patt. Recogn. Lett., 120, 36-38. https://doi.org/10.48550/arXiv.1612.02696.
- Kotsiantis, S.B. (2013), "Decision trees: A recent overview", Artif. Intell. Rev., 39, 261-283. https://doi.org/10.1007/s10462-011-9272-4.
- Kotsiantis, S.B., Zaharakis, I. and Pintelas, P. (2007), "Supervised machine learning: A review of classification techniques", Emerg. Artif. Intell. Applicat. Comput. Eng., 160(1), 3-24.
- Kumari, R. and Srivastava, S.K. (2017), "Machine learning: A review on binary classification", Int. J. Comput. Applicat., 160(7), 11-15. https://doi.org/10.5120/IJCA2017913083.
- Lang, K. and Bachmann, H. (2003), "On the seismic vulnerability of existing unreinforced masonry buildings", J. Earthq. Eng., 7(3), 407-426. https://doi.org/10.1080/13632460309350456
- Li, L. and Lin, H.T. (2006), "Ordinal regression by extended binary classification", Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference, MIT Press, Cambridge, MA, USA.
- Liu, Y., Li, X., Kong, A.W.K. and Goh, C.K. (2016), "Learning from small data: A pairwise approach for ordinal regression", 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, December.
- Lizundia, B., Durphy, S., Griffin, M., Holmes, W., Hortacsu, A., Kehoe, B., ... and Welliver, B. (2015), "Update of FEMA P-154: rapid visual screening for potential seismic hazards", Improving the Seismic Performance of Existing Buildings and Other Structures 2015, San Francisco, CA, USA, December.
- Luo, H. and Paal, S.G. (2019), "A locally weighted machine learning model for generalized prediction of drift capacity in seismic vulnerability assessments", Comput. Aid. Civil Infrastr. Eng., 34(11), 935-950. https://doi.org/10.1111/mice.12456.
- Mantovani, R.G., Rossi, A.L., Vanschoren, J., Bischl, B. and De Carvalho, A.C. (2015), "Effectiveness of random search in SVM hyper-parameter tuning", 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, July.
- Marom, N.D., Rokach, L. and Shmilovici, A. (2010), "Using the confusion matrix for improving ensemble classifiers", 2010 IEEE 26-th Convention of Electrical and Electronics Engineers in Israel, Eilat, Israel, November.
- Mohammed, R., Rawashdeh, J. and Abdullah, M. (2020), "Machine learning with oversampling and undersampling techniques: Overview study and experimental results", 2020 11th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, April.
- Nanda, R.P. and Majhi, D.R. (2013), "Review on rapid seismic vulnerability assessment for bulk of buildings", J. Inst. Eng. (India): Ser. A, 94, 187-197. https://doi.org/10.1007/s40030-013-0048-5.
- Natekin, A. and Knoll, A. (2013), "Gradient boosting machines, a tutorial", Front. Neurorobot., 7, 21. https://doi.org/10.3389/fnbot.2013.00021.
- Newaz, A., Hassan, S. and Haq, F.S. (2022), "An empirical analysis of the efficacy of different sampling techniques for imbalanced classification", arXiv preprint, 2022, arXiv: 2208.11852.
- Ningthoujam, M.C. and Nanda, R.P. (2018), "Rapid visual screening procedure of existing building based on statistical analysis", Int. J. Disaster Risk Reduct., 28, 720-730. https://doi.org/10.1016/j.ijdrr.2018.01.033
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... and Duchesnay, E. (2011), "Scikit-learn: Machine learning in Python", J. Mach. Learn. Res., 12, 2825-2830. https://doi.org/10.48550/arXiv.1201.0490.
- Peter Flach and Meelis Kull (2015), "Precision-recall-gain curves: PR analysis done right", Adv. Neural Informat. Pr. Syst., 28, 838-846. https://doi.org/10.5555/2969239.2969333.
- Price Code (2005), Eurocode 8: Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings, European Committee for Standardization, Brussels, Belgium.
- Roeslin, S., Ma, Q., Juarez-Garcia, H., Gomez-Bernal, A., Wicker, J. and Wotherspoon, L. (2020), "A machine learning damage prediction model for the 2017 Puebla-Morelos, Mexico, earthquake", Earthq. Spectra, 36(2), 314-339. https://doi.org/10.1177/8755293020936714.
- Rossetto, T. and Elnashai, A. (2002), "Derivation of vulnerability functions for RC buildings based on observation Data", European Commission, Brussels, Belgium.
- Rosti, A., Rota, M. and Penna, A. (2022), "An empirical seismic vulnerability model", Bull. Earthq. Eng., 20(8), 4147-4173. https://doi.org/10.1007/s10518-022-01374-3.
- Ruggieri, S., Cardellicchio, A., Leggieri, V. amd Uva, G. (2021), "Machinelearning based vulnerability analysis of existing buildings", Automat. Constr., 132, 103936. https://doi.org/10.1016/j.autcon.2021.103936.
- Sajan, K.C., Bhusal, A., Gautam, D. and Rupakhety, R. (2023), "Earthquake damage and rehabilitation intervention prediction using machine learning", Eng. Fail. Anal., 144, 106949. https://doi.org/10.1016/j.engfailanal.2022.106949.
- Singh, A., Prakash, B.S. and Chandrasekaran, K. (2016), "A comparison of linear discriminant analysis and ridge classifier on Twitter data", 2016 International Conference on Computing, Communication and Automation (ICCCA), Greater Noida, India, April.
- Snoek, J., Larochelle, H. and Adams, R.P. (2012), "Practical bayesian optimization of machine learning algorithms", Adv. Neural Informat. Pr. Syst., 25, 1.
- So, Y. (1995), A Tutorial on Logistic Regression, SAS White Papers, Cary, NC, USA.
- State of California (1999), A Tutorial on Logistic Regression, SAS White Papers, Cary, NC, USA.
- Tesfamariam, S. and Saatcioglu, M. (2008), "Risk-based seismic evaluation of reinforced concrete buildings", Earthq. Spectra, 24(3), 795-821. https://doi.org/10.1193/1.2952767.
- Vicente, R., Parodi, S., Lagomarsino, S., Varum, H. and Silva, J.M. (2011), "Seismic vulnerability and risk assessment: Case study of the historic city centre of Coimbra, Portugal", Bull. Earthq. Eng., 9, 1067-1096. http://doi.org/10.1007/s10518-010-9233-3.
- Visa, S., Ramsay, B., Ralescu, A.L. and Van Der Knaap, E. (2011), "Confusion matrixbased feature selection", MAICS, 710(1), 120-127.
- Yang, L. and Shami, A. (2020), "On hyperparameter optimization of machine learning algorithms: Theory and practice", Neurocomput., 415, 295-316. https://doi.org/10.1016/j.neucom.2020.07.061.
- Yen, S. and Lee, Y. (2006), "Under-sampling approaches for improving prediction of the minority class in an imbalanced dataset", Intelligent Control and Automation: International Conference on Intelligent Computing, ICIC 2006, Kunming, China, August.
- Yu, T. and Zhu, H. (2020), "Hyper-parameter optimization: A review of algorithms and applications", arXiv preprint, 2020, arXiv:2003.05689. https://doi.org/10.48550/arXiv.2003.05689.
- Zhang, B. and Srihari, S.N (2003), "Properties of binary vector dissimilarity measures", Proceedings of JCIS International Conference on Computer Vision, Pattern Recognition, and Image Processing.