Acknowledgement
The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA for funding this research work through the project number "NBU-FFR-2024-2105-01".
References
- Bayer, J., Wierstra, D., Togelius, J. and Schmidhuber, J. (2009), "Evolving memory cell structures for sequence learning", Artificial Neural Networks-ICANN 2009: 19th International Conference, Limassol, Cyprus, September.
- Cho, K., Van Merrienboer, B., Bahdanau, D. and Bengio, Y. (2014), "On the properties of neural machine translation: Encoder-decoder approaches", 8th Workshop on Syntax, Semantics and Structure in Statistical Translation, SSST 2014, Doha, Qatar, October.
- Dehestani, A., Kazemi, F., Abdi, R. and Nitka, M. (2022), "Prediction of fracture toughness in fiber-reinforced concrete, mortar, and rocks using various ML techniques", Eng. Fract. Mech., 276, 108914. https://doi.org/10.1016/j.engfracmech.2022.108914.
- Dikshit, V., Bhudolia, S.K. and Joshi, S.C. (2017), "Multiscale polymer composites: A review of the interlaminar fracture toughness improvement", Fib., 5(4), 38. https://doi.org/10.3390/fib5040038
- Ferreira, C. (2001), "Gene expression programming: A new adaptive algorithm for solving problems", Compl. Syst., 13(2), 87-129.
- Guan, J., Yuan, P., Hu, X., Qing, L. and Yao, X. (2019), "Statistical analysis of concrete fracture using normal distribution pertinent to maximum aggregate size", Theoret. Appl. Fract. Mech., 101, 236-253. https://doi.org/10.1016/j.tafmec.2019.03.004.
- Hamdia, K.M., Lahmer, T., Nguyen-Thoi, T. and Rabczuk, T. (2015), "Predicting the fracture toughness of PNCs: A stochastic approach based on ANN and ANFIS", Comput. Mater. Sci., 102, 304-313. https://doi.org/10.1016/j.commatsci.2015.02.045.
- Hochreiter, S. and Schmidhuber, J. (1997), "Long short-term memory", Neural Comput., 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735.
- Li, Z. and Yan, G. (2022), "ML for structural stability: Predicting dynamics responses using physics-informed neural networks", Comput. Concrete, 29(6), 419-432. https://doi.org/10.12989/cac.2022.29.6.419.
- Liu, G., Jia, L., Kong, B., Guan, K. and Zhang, H. (2017), "Artificial neural network application to study quantitative relationship between silicide and fracture toughness of Nb-Si alloys", Mater. Des., 129, 210-218. https://doi.org/10.1016/j.matdes.2017.05.027.
- Mahmoodzadeh, A., Fakhri, D., Mohammed, A.H., Mohammed, A.S., Ibrahim, H.H. and Rashidi, S. (2023), "Estimating the K-eff of a variety of materials using several ML models", Eng. Fract. Mech., 286, 109321. https://doi.org/10.1016/j.engfracmech.2023.109321.
- Mahmoodzadeh, A., Nejati, H.R., Mohammadi, M., Ibrahim, H.H., Khishe, M., Rashidi, S. and Ali, H.F.H. (2022), "Prediction of Mode-I rock fracture toughness using support vector regression with metaheuristic optimization algorithms", Eng. Fract. Mech., 264, 108334. https://doi.org/10.1016/j.engfracmech.2022.108334.
- Sharma, A., Anand Kumar, S. and Kushvaha, V. (2020), "Effect of aspect ratio on dynamic fracture toughness of particulate polymer composite using artificial neural network", Eng. Fract. Mech., 228, 106907. https://doi.org/10.1016/j.engfracmech.2020.106907.
- Suykens, J.A. and Vandewalle, J. (1999), "Multiclass least squares support vector machines", IJCNN'99. International Joint Conference on Neural Networks. Proceedings, Washington, D.C., USA, July.
- Wang, Y., Hu, X., Liang, L. and Zhu, W. (2016), "Determination of tensile strength and fracture toughness of concrete using notched 3-pb specimens", Eng. Fract. Mech., 160, 67-77. https://doi.org/10.1016/j.engfracmech.2016.03.036.
- Wu, Z., Tang, Y., Hong, B., Liang, B. and Liu, Y. (2023), "Enhanced precision in dam crack width measurement: Leveraging advanced lightweight network identification for pixel-level accuracy", Int. J. Intell. Syst., 2023, 1-16. https://doi.org/10.1155/2023/9940881.
- Yazici, S., Inan, G. and Tabak, V. (2007), "Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC", Constr. Build. Mater., 21(6), 1250-1253. https://doi.org/10.1016/j.conbuildmat.2006.05.025.