Acknowledgement
Support by Innovation Fund Research Project (No. SKLGDUEK202220) and National Natural Science Foundation of China (Nos. 41172116 and U1261212) is gratefully acknowledged.
References
- Amini, M.S., Sarfarazi, V., Asgari, K., Wang, X. and Hoori, M.M. (2023), "Simulation of the effect of inclusions length and angle on the failure behavior of concrete structure under 3D compressive test: Experimental test and numerical simulation", Steel Compos. Struct., 46(1), 53-73. https://doi.10.12989/scs.2023.46.1.053.
- Bahaaddini, M., Sheikhpourkhani, A.M. and Mansouri, H. (2019), "Flat-joint model to reproduce the mechanical behaviour of intact rocks", Eur. J. Environ. Civil Eng., 25(8), 1427-1448. https://doi.10.1080/19648189.2019.1579759.
- Bazant, Z.P., Tabbara, M.R., Kazemi, M.T. and Pijaudier-Cabot, G. (1990), "Random particle model for fracture of aggregate or fiber composites", J. Eng. Mech., 116(8), 1686-1705. https://doi.10.1061/(ASCE)0733-9399(1990)116:8(1686).
- Benkemoun, N., Hautefeuille, M., Colliat, J.B. and Ibrahimbegovic, A. (2010), "Failure of heterogeneous materials: 3D meso-scale FE models with embedded discontinuities", Int. J. Numer. Method. Eng., 82, 1671-1688. https://doi.10.1002/nme.2816.
- Bentz, D.P., Schlangen, E. and Garboczi, E.J. (1995), "Computer simulation of interfacial zone microstructure and its effect on the properties of cement-based composites", Materials Science of Concrete IV, American Ceramic Society, Westervill, OH, USA.
- Bolander, J.E., Elias, J., Cusatis, G. and Nagai, K. (2021), "Discrete mechanical models of concrete fracture", Eng. Fract. Mech., 257, 108030. https://doi.10.1016/j.engfracmech.2021.108030.
- Carol, I., Lopez, C.M. and Roa, O. (2001), "Micromechanical analysis of quasi-brittle materials using fracturebased interface elements", Int. J. Numer. Method. Eng., 52(1-2), 193-215. https://doi.org/10.1002/nme.277.
- Chen, Y., Feng, J.L., Li, H. and Meng, Z. (2021), "Effect of coarse aggregate volume fraction on mode II fracture toughness of concrete", Eng. Fract. Mech., 242, 107472. https://doi.10.1016/j.engfracmech.2020.107472.
- Cusatis, G., Bazant, Z.P. and Cedolin, L. (2003), "Confinement-shear lattice model for concrete damage in tension and compression: I. Theory", J. Eng. Mech., 129(12), 1439-1448. https://doi.10.1061/(ASCE)0733-9399(2003)129:12(1439).
- Dosta, M. and Skorych, V. (2020), "MUSEN: An open-source framework for GPU-accelerated DEM simulations", SoftwareX, 12, 100618. https://doi.10.1016/j.softx.2020.100618.
- Farhang, J., Segalman, D. and Starr, M. (2016), "Approximate constitutive relation for lap joints using a tribomechanical approach", International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas, NV, USA, September.
- Feng, Y.T., Zhao, T., Kato, J. and Zhou, W. (2016), "Towards stochastic discrete element modelling of spherical particles with surface roughness: A normal interaction law", Comput. Method. Appl. Mech. Eng., 315, 247-272. https://doi.10.1016/j.cma.2016.10.031.
- Fu, J.W., Haeri, H., Sarfarazi, V., Noshadi, A.H., Marji, M.F. and Guo, M.D.(2022), "Investigating the failure behavior of gypsum specimens with non-persistent vertical notch under uniaxial compression", Strength Mater., 54(1), 14-32. https://doi.10.1007/s11223-022-00374-7.
- Fu, J.W., Haeri, H., Yavari, M.D., Sarfarazi, V. and Marji, M.F. (2021), "Effects of the measured noise on the failure mechanism of pre-cracked concrete specimens under the loading modes I, II, III, and IV", Strength Mater., 53(6), 938-949. https://doi.10.1007/s11223-022-00362-x.
- Garborczi, E.J. (1993), "Computational materials science of cement-based materials", Mater. Struct., 26, 191-195. https://doi.10.07/BF02472611.
- Greenwood, J. and Williamson, J. (1966), "Contact of nominally flat surfaces", Proc. Royal Soc. London A: Math. Phys. Eng. Sci., 295, 300-319. https://doi.10.1098/rspa.1966.0242.
- Haeri, H., Sarfarazi, V., Yazdani, M., Shemirani, AB. and Hedayat, A.(2018), "Experimental and numerical investigation of the center-cracked horseshoe disk method for determining the mode I fracture toughness of rock-like material", Rock Mech. Rock Eng., 51(1), 173-185. https://doi.10.1007/s00603-017-1310-3.
- Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2012), "Simulating the bluntness of TBM disc cutters in rocks using displacement discontinuity method", 13th International Conference on Fracture, Beijing, China, June.
- Hansen, T.C. (1968), Causes, Mechanism and Control of Cracking in Concrete, American Concrete Institute, Farmington Hills, MI, USA.
- Hentz, S., Daudeville, L. and Donze, F.V. (2004), "Identification and validation of a discrete element model for concrete", J. Eng. Mech., 130(6), 709-719. https://doi.10.1061/(ASCE)0733-9399(2004)130:6(709).
- Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6(6), 773-781. https://doi.10.1016/0008-8846(76)90007-7.
- Hong, L., Gu, X.L. and Lin, F. (2014), "Influence of aggregate surface roughness on mechanical properties of interface and concrete", Constr. Build. Mater., 65, 338-349. https://doi.10.1016/j.conbuildmat.2014.04.131.
- Hsu, T.T.C. and Slate, F.O. (1963), "Tensile bond strength between aggregate and cement paste or mortar", ACI J. Proc., 60(4), 465-486. https://doi.10.14359/7863.
- ITASCA (2014), PFC (Particle Flow Code in 2 and 3 Dimensions), Version 5.0, Itasca Consulting Group, Inc., Minneapolis, MN, USA.
- Jia, J.Y. and Gu, X.L. (2021), "Effects of coarse aggregate surface morphology on aggregate-mortar interface strength and mechanical properties of concrete", Constr. Build. Mater., 294, 123515. https://doi.10.1016/j.conbuildmat.2021.123515.
- Jin, L., Xu, J., Zhang, R. and Du, X.L. (2017), "Numerical study on the impact performances of reinforced concrete beams: A mesoscopic simulation method", Eng. Fail. Anal., 80, 141-163. https://doi. 10.1016/j.engfailanal.2017.06.005.
- Johnson, K.L. (1985), Contact Mechanics, Cambridge University Press, Cambridge, UK.
- Kesejini, Y.A., Bahramifar, A., Afshin, H. and Tabrizi, M.E. (2021), "High deformable concrete (HDC) element: An experimental and numerical", Comput. Concrete, 27(5), 357-365. https://doi.10.12989/cac.2021.27.5.357.
- Konigsberger, M., Pichler, B. and Hellmich, C. (2014), "Micromechanics of ITZ-Aggregate interaction in concrete part I: Stress concentration", J. Am. Ceram. Soc., 97(2), 535-542. https://doi.10.1111/jace.12591.
- Liang, J.F., Hu, M.H, Gu, L.S. and Xue, K.X. (2017), "Bond behavior between high volume fly ash concrete and steel rebars", Comput. Concrete, 19(6), 625-630. https://doi.10.12989/cac.2017.19.6.625.
- Ma, H.Y. and Li, Z.J. (2014), "Multi-aggregate approach for modeling interfacial transition zone in concrete", ACI Mater. J., 111(2), 189-199. https://doi.10.14359/51686501.
- Ma, Y. and Huang, H.Y. (2018), "A displacement-softening contact model for discrete element modeling of quasi-brittle materials", Int. J. Rock Mech. Min. Sci., 104, 9-19. https://doi.10.1016/j.ijrmms.2018.02.007.
- Mazzucco, G., Salomoni, V.A. and Majorana, C. (2021), "A cohesive contact algorithm to evaluate the mechanical behaviour of concrete ITZ at different roughness conditions", Constr. Build. Mater., 294, 123479. https://doi.10.1016/j.conbuildmat.2021.123479.
- Mehta, P.K. and Monteiro, P.J.M. (2013), Concrete: Microstructure, Properties, and Materials, McGraw-Hill, New York, NY, USA.
- Mindess, S. and Diamond, S. (1982), "A device for direct observation of cracking of cement paste or mortar under compressiive loading within a scanning electron microscope", Cement Concrete Res., 12(5), 569-576. https://doi.10.1016/0008-8846(82)90017-5.
- Nitka, M. and Tejchman, J. (2018), "A three-dimensional mesoscale approach to concrete fracture based on combined DEM with X-ray micro CT images", Cement Concrete Res., 107, 11-29. https://doi.10.1016/j.cemconres.2018.02.006.
- Ollivier, J.P., Maso, J.C. and Bourdette, B. (1995), "Interfacial transition zone in concrete", Adv. Cement Based Mater., 2(1), 30-38. https://doi.10.1016/1065-7355(95)90037-3.
- Pan, Z., Ma, R., Wang, D. and Chen, A. (2018), "A review of lattice type model in fracture mechanics: Theory, applications, and perspectives", Eng. Fract. Mech., 190, 382-409. https://doi.10.1016/j.engfracmech.2017.12.037.
- Potyondy, D.O. (2018), "A flat-jointed bonded-particle model for rock", The 52nd U.S. Rock Mechanics/Geomechanics Symposium, Seattle, WA, USA, June.
- Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.10.1016/j.ijrmms.2004.09.011.
- Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (2002), Numerical Recipes in C++: The Art of Scientific Computing, Cambridge University Press, New York, NY, USA.
- Rao, G.A. and Prasad, B.K.R. (2002), "Influence of the roughness of aggregate surface on the interface bond strength", Cement Concrete Res., 32(2), 253-257. https://doi.10.1016/S0008-8846(01)00668-8.
- Sarfaraz, V., Abharian, S., Babanouri, N. and Rad, H.S. (2021), "Interaction between a hole and a crack in different layouts: Experimental and numerical study on concrete", Comput. Concrete, 28(4), 415-432. https://doi.10.12989/cac.2021.28.4.415.
- Sarfarazi, V., Asgari, K., Kargozari, M. and Ebneabbasi, P. (2023), "Interaction between opening space in concrete slab and non-persistent joint under uniaxial compression using experimental test and numerical simulation", Comput. Concrete, 31(3), 207-221. https://doi.10.12989/cac.2023.31.3.207.
- Sarfarazi, V., Asgari, K., Maroof, S. and Fattahi, S. (2022), "Effects of number and angle of T shape non persistent cracks on the failure behavior of samples under UCS test", Comput. Concrete, 29(1), 31- 45. https://doi.10.12989/cac.2022.29.1.031.
- Sarfarazi, V., Haeri, H. and Shemirani, AB.(2017), "Direct and indirect methods for determination of mode I fracture toughness using PFC2D", Comput. Concrete, 20(1), 39-47. https://doi.10.12989/cac.2017.20.1.039.
- Sarfarazi, V., Haeri, H., Ebneabbasi, P., Shemirani, A.B. and Hedayat, A. (2018), "Determination of tensile strength of concrete using a novel apparatus", Constr. Build. Mater., 166, 817-832. https://doi.10.1016/j.conbuildmat.2018.01.157.
- Schlangen, E. and van Mier, J.G.M. (1992), "Experimental and numerical analysis of micromechanisms of fracture of cement-based composites", Cement Concrete Compos., 14(2), 105-118. https://doi.10.1016/0958-9465(92)90004-F.
- Scholtes, L. and Donze, F.V. (2012), "Modelling progressive failure in fractured rock masses using a 3D discrete element method", Int. J. Rock Mech. Min. Sci., 52, 18-30. https://doi.10.1016/j.ijrmms.2012.02.009.
- Scrivener, K.L., Crumbie, A.K. and Laugesen, P. (2004), "The interfacial transition zone (ITZ) between cement paste and aggregate in concrete", Interf. Sci., 12(4), 411-421. https://doi.10.1023/B:INTS.0000042339.92990.4c.
- Sebastian, R., Dosta, M., Schaan, G., Ritter, M. and Schmidt-Dohl, F. (2020), "Numerical study on the mechanical behavior of ultrahigh performance concrete using a three-phase discrete element model", Struct. Concrete, 10, 2020. https://doi.10.1002/suco.202000435.
- Shi, X.D., Feng, G., Bai, J., Wang, S.Y., Wang, K., Cui, B., Yang, X., Song, C. and Zhao, H. (2023), "Numerical and experimental study of the mechanical behaviour for FRP-wrapped cement mortar-coal composite disc", Comput. Geotech., 158, 105378. https://doi.10.1016/j.compgeo.2023.105373.
- Shiu, W.J., Donze, F.V. and Daudeville, L. (2008), "Compaction process in concrete during missile impact: A DEM analysis", Comput. Concrete, 5(4), 329-342. https://doi.10.12989/cac.2008.5.4.329.
- Tasong, W.A., Lynsdale, C.J. and Cripps, J.C. (1999), "Aggregate-cement paste interface: Part I. Influence of aggregate geochemistry", Cement Concrete Res., 29(7), 1019-1025. https://doi. 10.1016/S0008-8846(99)00086-1.
- Tekin, I., Birgul, R. and Aruntas, H.Y. (2018), "X-ray CT monitoring of macro void development in mortars exposed tosulfate attack", Comput. Concrete, 21(4), 367-376. https://doi.10.12989/cac.2018.21.4.367.
- Vicente, M.A., Minguez, J. and Gonzalez, D.C. (2019), "Computed tomography scanning of the internal microstructure, crack mechanisms, and structural behavior of fiber-reinforced concrete under static and cyclic bending tests", Int. J. Fatig., 121, 9-19. https://doi.10.1016/j.ijfatigue.2018.11.023.
- Wang, D.D., Zhang, G. Sarfarazi, V., Haeri, H. and Naderi, A.A. (2020), "Numerical simulation and experimental investigation of the shear mechanical behaviors of non-persistent joint in new shear test condition", Comput. Concrete, 26(3), 367-376. https://doi.10.12989/cac.2020.26.3.239.
- Wang, J., Li, X., Jivkov, A., Li, Q.M. and Engleberg, D.L. (2021), "Interfacial transition zones in concrete meso-scale models: Balancing physical realism and computational efficiency", Constr. Build. Mater., 293, 123332. https://doi.10.1016/j.conbuildmat.2021.123332.
- Xu, X.L.,Wu, S.C., Gao, Y.T. and Xu, M.F. (2016), "Effects of micro-structure and micro-parameters on brazilian tensile strength using flat-joint model", Rock Mech. Rock Eng., 49, 3575-3595. https://doi.10.1007/s00603-016-1021-1.
- Zaitsev, J. and Wittmann, F.H. (1981), "Simulation of crack propagation and failure of concrete", Mater. Constr., 14, 357-365. https://10.1007/BF02478729.
- Zhou, F., Sarfarazi, V., Haeri, H., Soleymanipargoo, M.H., Fu, J. and Marji, M.F. (2021), "A coupled experimental and numerical simulation of concrete joints' behaviors in tunnel support using concrete specimens", Comput. Concrete, 28(2), 189-208. https://doi.10.12989/cac.2021.28.2.189.
- Zhou, L., Haeri, H., Sarfarazi, V., Marji, M.F., Naderi, A.A. and Vayani, M.H. (2023), "Experimental and numerical investigation on the thickness effect of concrete specimens in a new tensile testing apparatus", Comput. Concrete, 31(1), 71-84. https://doi.10.12989/cac.2023.31.1.071.
- Zhou, R., Song, Z. and Lu, Y. (2017), "3D mesoscale finite element modelling of concrete", Comput. Struct., 192, 96-113. https://doi.10.1016/j.compstruc.2017.07.009.
- Zhou, X., Xie, Y., Long, G., Zeng, X., Li, J., Yao, L., Jiang, W. and Pan, Z. (2021), "DEM analysis of the effect of interface transition zone on dynamic splitting tensile behavior of high-strength concrete based on multi-phase model", Cement Concrete Res., 149, 106577. https://doi.10.1016/j.cemconres.2021.106577.
- Zhu, X.Y., Chen, X.D, Lu, J. and Fan, X.Q. (2019), "Analysis of notch depth and loading rate effects on crack growth in concrete by FE and DIC", Comput. Concrete, 24(6), 527-539. https://doi.10.12989/cac.2019.24.6.527.
- Zimbelmann, R. (1985), "A contribution to the problem of cement-aggregate bond", Cement Concrete Res., 15(5), 801-808. https://doi.10.1016/0008-8846(85)90146-2.