DOI QR코드

DOI QR Code

A rough flat-joint model for interfacial transition zone in concrete

  • Fengchen Li (School of Mechanics and Civil Engineering, China University of Mining and Technology Beijing) ;
  • J.L. Feng (State Key Laboratory for Tunnel Engineering, China University of Mining and Technology Beijing)
  • 투고 : 2023.06.09
  • 심사 : 2024.01.31
  • 발행 : 2024.08.25

초록

A 3D discrete element model integrating the rough surface contact concept with the flat-joint model is suggested to examine the mechanical characteristics of the interfacial transition zone (ITZ) in concrete. The essential components of our DEM procedure include the calculation of the actual contact area in an element contact-pair related to the bonded factor using a Gaussian probability distribution of asperity height, as well as the determination of the contact probability-relative displacement form using the least square method for further computing the force-displacement of ITZs. The present formulations are implemented in MUSEN, an open source development environment for discrete element analysis that is optimized for high performance computation. The model's meso-parameters are calibrated by using uniaxial compression and splitting tensile simulations, as well as laboratory tests of concrete from the literature. The present model's DEM predictions accord well with laboratory experimental tests of pull-out concrete specimens published in the literature.

키워드

과제정보

Support by Innovation Fund Research Project (No. SKLGDUEK202220) and National Natural Science Foundation of China (Nos. 41172116 and U1261212) is gratefully acknowledged.

참고문헌

  1. Amini, M.S., Sarfarazi, V., Asgari, K., Wang, X. and Hoori, M.M. (2023), "Simulation of the effect of inclusions length and angle on the failure behavior of concrete structure under 3D compressive test: Experimental test and numerical simulation", Steel Compos. Struct., 46(1), 53-73. https://doi.10.12989/scs.2023.46.1.053.
  2. Bahaaddini, M., Sheikhpourkhani, A.M. and Mansouri, H. (2019), "Flat-joint model to reproduce the mechanical behaviour of intact rocks", Eur. J. Environ. Civil Eng., 25(8), 1427-1448. https://doi.10.1080/19648189.2019.1579759.
  3. Bazant, Z.P., Tabbara, M.R., Kazemi, M.T. and Pijaudier-Cabot, G. (1990), "Random particle model for fracture of aggregate or fiber composites", J. Eng. Mech., 116(8), 1686-1705. https://doi.10.1061/(ASCE)0733-9399(1990)116:8(1686).
  4. Benkemoun, N., Hautefeuille, M., Colliat, J.B. and Ibrahimbegovic, A. (2010), "Failure of heterogeneous materials: 3D meso-scale FE models with embedded discontinuities", Int. J. Numer. Method. Eng., 82, 1671-1688. https://doi.10.1002/nme.2816.
  5. Bentz, D.P., Schlangen, E. and Garboczi, E.J. (1995), "Computer simulation of interfacial zone microstructure and its effect on the properties of cement-based composites", Materials Science of Concrete IV, American Ceramic Society, Westervill, OH, USA.
  6. Bolander, J.E., Elias, J., Cusatis, G. and Nagai, K. (2021), "Discrete mechanical models of concrete fracture", Eng. Fract. Mech., 257, 108030. https://doi.10.1016/j.engfracmech.2021.108030.
  7. Carol, I., Lopez, C.M. and Roa, O. (2001), "Micromechanical analysis of quasi-brittle materials using fracturebased interface elements", Int. J. Numer. Method. Eng., 52(1-2), 193-215. https://doi.org/10.1002/nme.277.
  8. Chen, Y., Feng, J.L., Li, H. and Meng, Z. (2021), "Effect of coarse aggregate volume fraction on mode II fracture toughness of concrete", Eng. Fract. Mech., 242, 107472. https://doi.10.1016/j.engfracmech.2020.107472.
  9. Cusatis, G., Bazant, Z.P. and Cedolin, L. (2003), "Confinement-shear lattice model for concrete damage in tension and compression: I. Theory", J. Eng. Mech., 129(12), 1439-1448. https://doi.10.1061/(ASCE)0733-9399(2003)129:12(1439).
  10. Dosta, M. and Skorych, V. (2020), "MUSEN: An open-source framework for GPU-accelerated DEM simulations", SoftwareX, 12, 100618. https://doi.10.1016/j.softx.2020.100618.
  11. Farhang, J., Segalman, D. and Starr, M. (2016), "Approximate constitutive relation for lap joints using a tribomechanical approach", International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas, NV, USA, September.
  12. Feng, Y.T., Zhao, T., Kato, J. and Zhou, W. (2016), "Towards stochastic discrete element modelling of spherical particles with surface roughness: A normal interaction law", Comput. Method. Appl. Mech. Eng., 315, 247-272. https://doi.10.1016/j.cma.2016.10.031.
  13. Fu, J.W., Haeri, H., Sarfarazi, V., Noshadi, A.H., Marji, M.F. and Guo, M.D.(2022), "Investigating the failure behavior of gypsum specimens with non-persistent vertical notch under uniaxial compression", Strength Mater., 54(1), 14-32. https://doi.10.1007/s11223-022-00374-7.
  14. Fu, J.W., Haeri, H., Yavari, M.D., Sarfarazi, V. and Marji, M.F. (2021), "Effects of the measured noise on the failure mechanism of pre-cracked concrete specimens under the loading modes I, II, III, and IV", Strength Mater., 53(6), 938-949. https://doi.10.1007/s11223-022-00362-x.
  15. Garborczi, E.J. (1993), "Computational materials science of cement-based materials", Mater. Struct., 26, 191-195. https://doi.10.07/BF02472611.
  16. Greenwood, J. and Williamson, J. (1966), "Contact of nominally flat surfaces", Proc. Royal Soc. London A: Math. Phys. Eng. Sci., 295, 300-319. https://doi.10.1098/rspa.1966.0242.
  17. Haeri, H., Sarfarazi, V., Yazdani, M., Shemirani, AB. and Hedayat, A.(2018), "Experimental and numerical investigation of the center-cracked horseshoe disk method for determining the mode I fracture toughness of rock-like material", Rock Mech. Rock Eng., 51(1), 173-185. https://doi.10.1007/s00603-017-1310-3.
  18. Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2012), "Simulating the bluntness of TBM disc cutters in rocks using displacement discontinuity method", 13th International Conference on Fracture, Beijing, China, June.
  19. Hansen, T.C. (1968), Causes, Mechanism and Control of Cracking in Concrete, American Concrete Institute, Farmington Hills, MI, USA.
  20. Hentz, S., Daudeville, L. and Donze, F.V. (2004), "Identification and validation of a discrete element model for concrete", J. Eng. Mech., 130(6), 709-719. https://doi.10.1061/(ASCE)0733-9399(2004)130:6(709).
  21. Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6(6), 773-781. https://doi.10.1016/0008-8846(76)90007-7.
  22. Hong, L., Gu, X.L. and Lin, F. (2014), "Influence of aggregate surface roughness on mechanical properties of interface and concrete", Constr. Build. Mater., 65, 338-349. https://doi.10.1016/j.conbuildmat.2014.04.131.
  23. Hsu, T.T.C. and Slate, F.O. (1963), "Tensile bond strength between aggregate and cement paste or mortar", ACI J. Proc., 60(4), 465-486. https://doi.10.14359/7863.
  24. ITASCA (2014), PFC (Particle Flow Code in 2 and 3 Dimensions), Version 5.0, Itasca Consulting Group, Inc., Minneapolis, MN, USA.
  25. Jia, J.Y. and Gu, X.L. (2021), "Effects of coarse aggregate surface morphology on aggregate-mortar interface strength and mechanical properties of concrete", Constr. Build. Mater., 294, 123515. https://doi.10.1016/j.conbuildmat.2021.123515.
  26. Jin, L., Xu, J., Zhang, R. and Du, X.L. (2017), "Numerical study on the impact performances of reinforced concrete beams: A mesoscopic simulation method", Eng. Fail. Anal., 80, 141-163. https://doi. 10.1016/j.engfailanal.2017.06.005.
  27. Johnson, K.L. (1985), Contact Mechanics, Cambridge University Press, Cambridge, UK.
  28. Kesejini, Y.A., Bahramifar, A., Afshin, H. and Tabrizi, M.E. (2021), "High deformable concrete (HDC) element: An experimental and numerical", Comput. Concrete, 27(5), 357-365. https://doi.10.12989/cac.2021.27.5.357.
  29. Konigsberger, M., Pichler, B. and Hellmich, C. (2014), "Micromechanics of ITZ-Aggregate interaction in concrete part I: Stress concentration", J. Am. Ceram. Soc., 97(2), 535-542. https://doi.10.1111/jace.12591.
  30. Liang, J.F., Hu, M.H, Gu, L.S. and Xue, K.X. (2017), "Bond behavior between high volume fly ash concrete and steel rebars", Comput. Concrete, 19(6), 625-630. https://doi.10.12989/cac.2017.19.6.625.
  31. Ma, H.Y. and Li, Z.J. (2014), "Multi-aggregate approach for modeling interfacial transition zone in concrete", ACI Mater. J., 111(2), 189-199. https://doi.10.14359/51686501.
  32. Ma, Y. and Huang, H.Y. (2018), "A displacement-softening contact model for discrete element modeling of quasi-brittle materials", Int. J. Rock Mech. Min. Sci., 104, 9-19. https://doi.10.1016/j.ijrmms.2018.02.007.
  33. Mazzucco, G., Salomoni, V.A. and Majorana, C. (2021), "A cohesive contact algorithm to evaluate the mechanical behaviour of concrete ITZ at different roughness conditions", Constr. Build. Mater., 294, 123479. https://doi.10.1016/j.conbuildmat.2021.123479.
  34. Mehta, P.K. and Monteiro, P.J.M. (2013), Concrete: Microstructure, Properties, and Materials, McGraw-Hill, New York, NY, USA.
  35. Mindess, S. and Diamond, S. (1982), "A device for direct observation of cracking of cement paste or mortar under compressiive loading within a scanning electron microscope", Cement Concrete Res., 12(5), 569-576. https://doi.10.1016/0008-8846(82)90017-5.
  36. Nitka, M. and Tejchman, J. (2018), "A three-dimensional mesoscale approach to concrete fracture based on combined DEM with X-ray micro CT images", Cement Concrete Res., 107, 11-29. https://doi.10.1016/j.cemconres.2018.02.006.
  37. Ollivier, J.P., Maso, J.C. and Bourdette, B. (1995), "Interfacial transition zone in concrete", Adv. Cement Based Mater., 2(1), 30-38. https://doi.10.1016/1065-7355(95)90037-3.
  38. Pan, Z., Ma, R., Wang, D. and Chen, A. (2018), "A review of lattice type model in fracture mechanics: Theory, applications, and perspectives", Eng. Fract. Mech., 190, 382-409. https://doi.10.1016/j.engfracmech.2017.12.037.
  39. Potyondy, D.O. (2018), "A flat-jointed bonded-particle model for rock", The 52nd U.S. Rock Mechanics/Geomechanics Symposium, Seattle, WA, USA, June.
  40. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.10.1016/j.ijrmms.2004.09.011.
  41. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (2002), Numerical Recipes in C++: The Art of Scientific Computing, Cambridge University Press, New York, NY, USA.
  42. Rao, G.A. and Prasad, B.K.R. (2002), "Influence of the roughness of aggregate surface on the interface bond strength", Cement Concrete Res., 32(2), 253-257. https://doi.10.1016/S0008-8846(01)00668-8.
  43. Sarfaraz, V., Abharian, S., Babanouri, N. and Rad, H.S. (2021), "Interaction between a hole and a crack in different layouts: Experimental and numerical study on concrete", Comput. Concrete, 28(4), 415-432. https://doi.10.12989/cac.2021.28.4.415.
  44. Sarfarazi, V., Asgari, K., Kargozari, M. and Ebneabbasi, P. (2023), "Interaction between opening space in concrete slab and non-persistent joint under uniaxial compression using experimental test and numerical simulation", Comput. Concrete, 31(3), 207-221. https://doi.10.12989/cac.2023.31.3.207.
  45. Sarfarazi, V., Asgari, K., Maroof, S. and Fattahi, S. (2022), "Effects of number and angle of T shape non persistent cracks on the failure behavior of samples under UCS test", Comput. Concrete, 29(1), 31- 45. https://doi.10.12989/cac.2022.29.1.031.
  46. Sarfarazi, V., Haeri, H. and Shemirani, AB.(2017), "Direct and indirect methods for determination of mode I fracture toughness using PFC2D", Comput. Concrete, 20(1), 39-47. https://doi.10.12989/cac.2017.20.1.039.
  47. Sarfarazi, V., Haeri, H., Ebneabbasi, P., Shemirani, A.B. and Hedayat, A. (2018), "Determination of tensile strength of concrete using a novel apparatus", Constr. Build. Mater., 166, 817-832. https://doi.10.1016/j.conbuildmat.2018.01.157.
  48. Schlangen, E. and van Mier, J.G.M. (1992), "Experimental and numerical analysis of micromechanisms of fracture of cement-based composites", Cement Concrete Compos., 14(2), 105-118. https://doi.10.1016/0958-9465(92)90004-F.
  49. Scholtes, L. and Donze, F.V. (2012), "Modelling progressive failure in fractured rock masses using a 3D discrete element method", Int. J. Rock Mech. Min. Sci., 52, 18-30. https://doi.10.1016/j.ijrmms.2012.02.009.
  50. Scrivener, K.L., Crumbie, A.K. and Laugesen, P. (2004), "The interfacial transition zone (ITZ) between cement paste and aggregate in concrete", Interf. Sci., 12(4), 411-421. https://doi.10.1023/B:INTS.0000042339.92990.4c.
  51. Sebastian, R., Dosta, M., Schaan, G., Ritter, M. and Schmidt-Dohl, F. (2020), "Numerical study on the mechanical behavior of ultrahigh performance concrete using a three-phase discrete element model", Struct. Concrete, 10, 2020. https://doi.10.1002/suco.202000435.
  52. Shi, X.D., Feng, G., Bai, J., Wang, S.Y., Wang, K., Cui, B., Yang, X., Song, C. and Zhao, H. (2023), "Numerical and experimental study of the mechanical behaviour for FRP-wrapped cement mortar-coal composite disc", Comput. Geotech., 158, 105378. https://doi.10.1016/j.compgeo.2023.105373.
  53. Shiu, W.J., Donze, F.V. and Daudeville, L. (2008), "Compaction process in concrete during missile impact: A DEM analysis", Comput. Concrete, 5(4), 329-342. https://doi.10.12989/cac.2008.5.4.329.
  54. Tasong, W.A., Lynsdale, C.J. and Cripps, J.C. (1999), "Aggregate-cement paste interface: Part I. Influence of aggregate geochemistry", Cement Concrete Res., 29(7), 1019-1025. https://doi. 10.1016/S0008-8846(99)00086-1.
  55. Tekin, I., Birgul, R. and Aruntas, H.Y. (2018), "X-ray CT monitoring of macro void development in mortars exposed tosulfate attack", Comput. Concrete, 21(4), 367-376. https://doi.10.12989/cac.2018.21.4.367.
  56. Vicente, M.A., Minguez, J. and Gonzalez, D.C. (2019), "Computed tomography scanning of the internal microstructure, crack mechanisms, and structural behavior of fiber-reinforced concrete under static and cyclic bending tests", Int. J. Fatig., 121, 9-19. https://doi.10.1016/j.ijfatigue.2018.11.023.
  57. Wang, D.D., Zhang, G. Sarfarazi, V., Haeri, H. and Naderi, A.A. (2020), "Numerical simulation and experimental investigation of the shear mechanical behaviors of non-persistent joint in new shear test condition", Comput. Concrete, 26(3), 367-376. https://doi.10.12989/cac.2020.26.3.239.
  58. Wang, J., Li, X., Jivkov, A., Li, Q.M. and Engleberg, D.L. (2021), "Interfacial transition zones in concrete meso-scale models: Balancing physical realism and computational efficiency", Constr. Build. Mater., 293, 123332. https://doi.10.1016/j.conbuildmat.2021.123332.
  59. Xu, X.L.,Wu, S.C., Gao, Y.T. and Xu, M.F. (2016), "Effects of micro-structure and micro-parameters on brazilian tensile strength using flat-joint model", Rock Mech. Rock Eng., 49, 3575-3595. https://doi.10.1007/s00603-016-1021-1.
  60. Zaitsev, J. and Wittmann, F.H. (1981), "Simulation of crack propagation and failure of concrete", Mater. Constr., 14, 357-365. https://10.1007/BF02478729.
  61. Zhou, F., Sarfarazi, V., Haeri, H., Soleymanipargoo, M.H., Fu, J. and Marji, M.F. (2021), "A coupled experimental and numerical simulation of concrete joints' behaviors in tunnel support using concrete specimens", Comput. Concrete, 28(2), 189-208. https://doi.10.12989/cac.2021.28.2.189.
  62. Zhou, L., Haeri, H., Sarfarazi, V., Marji, M.F., Naderi, A.A. and Vayani, M.H. (2023), "Experimental and numerical investigation on the thickness effect of concrete specimens in a new tensile testing apparatus", Comput. Concrete, 31(1), 71-84. https://doi.10.12989/cac.2023.31.1.071.
  63. Zhou, R., Song, Z. and Lu, Y. (2017), "3D mesoscale finite element modelling of concrete", Comput. Struct., 192, 96-113. https://doi.10.1016/j.compstruc.2017.07.009.
  64. Zhou, X., Xie, Y., Long, G., Zeng, X., Li, J., Yao, L., Jiang, W. and Pan, Z. (2021), "DEM analysis of the effect of interface transition zone on dynamic splitting tensile behavior of high-strength concrete based on multi-phase model", Cement Concrete Res., 149, 106577. https://doi.10.1016/j.cemconres.2021.106577.
  65. Zhu, X.Y., Chen, X.D, Lu, J. and Fan, X.Q. (2019), "Analysis of notch depth and loading rate effects on crack growth in concrete by FE and DIC", Comput. Concrete, 24(6), 527-539. https://doi.10.12989/cac.2019.24.6.527.
  66. Zimbelmann, R. (1985), "A contribution to the problem of cement-aggregate bond", Cement Concrete Res., 15(5), 801-808. https://doi.10.1016/0008-8846(85)90146-2.