DOI QR코드

DOI QR Code

Effect of surface treatment on mechanical and micro-structural properties of basalt fiber reinforced mortars

  • Sukru Ozkan (Department of Construction, Isparta University of Applied Sciences, Technical Sciences Vocational School Isparta)
  • Received : 2022.11.21
  • Accepted : 2024.01.30
  • Published : 2024.08.25

Abstract

The use of basalt fibers in various types of fiber-reinforced mortars has been increasing. One of the factors that expands the use of basalt fibers is that it is a natural fiber and therefore the production costs are lower than fibers such as PVA fiber. Basalt fibers have some drawbacks such as reducing the workability of mortars in which basalt fibers are added due to their structure, and negatively affecting the mechanical properties when used above a certain proportional amount depending on the type of mixture. For this purpose, in this study, as a different application, the surface of basalt fibers with different lengths (6 and 12 mm) was treated with Triton X-100 surfactant, and these disadvantages were tried to be reduced. In the study, a two-step method was followed. In the first one, the effectiveness of adding untreated and treated basalt fiber at 1, 1.25, 1.5, 1.75 and 2% by weight to the mortar mixtures was determined by conducting flow spread and flow rate as fresh mortar characteristics. In the second one, microstructural characterization and mechanical tests were performed as hardened mortar properties. The results showed that the flow characteristics of basalt fiber reinforced mortars treated with surfactant improved compared to untreated basalt fiber reinforced mortars. In terms of mechanical properties, the addition of 2% treated basalt fiber by weight to the mixtures allowed to obtain %18, %12, and%48 higher values of compressive, flexural, and tensile strength values, respectively, compared to the same amount of untreated basalt fiber mixtures.

Keywords

Acknowledgement

The author would like to thank Spinteks, Turkey distributor of Technobasalt-Invest LLC, for supplying the basalt fiber.

References

  1. Abrishambaf, A., Pimentel, M. and Nunes, S. (2017), "Influence of fibre orientation on the tensile behaviour of ultra-high performance fibre reinforced cementitious composites", Cement Concrete Res., 97, 28-40. https://doi.org/10.1016/J.CEMCONRES.2017.03.007.
  2. Abu-Ghunmi, L., Badawi, M. and Fayyad, M. (2014), "Fate of triton X-100 applications on water and soil environments: A review", J. Surfactants Deterg., 17, 833-838. https://doi.org/10.1007/s11743-014-1584-3.
  3. ACI Commitee (2002), Report on Fiber Reinforced Concrete, American Concrete Institute, Farmington Hills, MI, USA.
  4. Adesina, A. (2022), Challenges and Solutions for the Use of Natural Fibers in Cementitious Composites, Woodhead Publishing, Sawston, Cambridge, UK.
  5. Afroz, M., Patnaikuni, I. and Venkatesan, S. (2017), "Chemical durability and performance of modified basalt fiber in concrete medium", Constr. Build. Mater., 154, 191-203. https://doi.org/10.1016/j.conbuildmat.2017.07.153.
  6. Akand, L., Yang, M. and Wang, X. (2018), "Effectiveness of chemical treatment on polypropylene fibers as reinforcement in pervious concrete", Constr. Build. Mater., 163, 32-39. https://doi.org/10.1016/j.conbuildmat.2017.12.068.
  7. Arslan, C. and Dogan, M. (2018), "The effects of silane coupling agents on the mechanical properties of basalt fiber reinforced poly(butylene terephthalate) composites", Compos. Part B: Eng., 146, 145-154. https://doi.org/10.1016/j.compositesb.2018.04.023.
  8. ASTM C109/C109M-16a (2016), Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2- in. or [50-mm] Cube Specimens, ASTM International, West Conshohocken, PA, USA.
  9. ASTM C192/C192M-14 (2015), Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken, PA, USA.
  10. ASTM C1275-18, (2018), Standard Test Method for Monotonic Tensile Behavior of Continuous Fiber-Reinforced Advanced Ceramics with Solid Rectangular Cross-Section Test Specimens at Ambient Temperature, ASTM International, West Conshohocken, PA, USA.
  11. ASTM C1437-15, (2015), Standard Test Method for Flow of Hydraulic Cement Mortar, ASTM International, West Conshohocken, PA, USA.
  12. ASTM C150/C150M-21 (2017), Standard Specification for Portland Cement, ASTM International, West Conshohocken, PA, USA.
  13. ASTM C230/C230M-20, (2020), Standard Specification for Flow Table for Use in Tests of Hydraulic Cement, ASTM International, West Conshohocken, PA, USA.
  14. ASTM C494/C494M-17, (2017), Standard Specification for Chemical Admixtures for Concrete, ASTM International, West Conshohocken, PA, USA.
  15. ASTM C618-19 (2019), Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA, USA.
  16. ASTM C78/C78M-18 (2018), Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading), ASTM International, West Conshohocken, PA, USA.
  17. ASTM D6910/D6910M-19 (2019), Standard Test Method for Marsh Funnel Viscosity of Construction Slurries, ASTM International, West Conshohocken, PA, USA.
  18. Avanaki, M.J., Abedi, M., Hoseini, A. and Maerefat, M.S. (2018), "Effects of fiber volume fraction and aspect ratio on mechanical properties of hybrid steel fiber reinforced concreteˮ, New Approach. Civil Eng., 2(2), 49-64. https://doi.org/10.30469/jnace.2018.69394.
  19. Avanaki, M.J. (2019), "Effects of hybrid steel fiber reinforced composites on structural performance of segmental linings subjected to TBM jacks", Struct. Concrete, 20(6), 1909-1925. https://doi.org/10.1002/SUCO.201800322.
  20. Balagopal, V., Panicker, A.S., Arathy, M.S., Sandeep, S. and Pillai, S.K. (2022), "Influence of fibers on the mechanical properties of cementitious composites - a review", Mater. Today Proc., 65, 1846-1850. https://doi.org/10.1016/J.MATPR.2022.05.023.
  21. Bhat, T., Chevali, V., Liu, X., Feih, S. and Mouritz, A.P. (2015), "Fire structural resistance of basalt fibre composite", Compos. Part A Appl. Sci. Manuf., 71, 107-115. https://doi.org/10.1016/j.compositesa.2015.01.006.
  22. Borhan, T.M. (2012), "Properties of glass concrete reinforced with short basalt fibre", Mater. Des., 42, 265-271. https://doi.org/10.1016/j.matdes.2012.05.062.
  23. Carl Redon, B., Li, V.C., Wu, C., Hoshiro, H., Saito, T. and Ogawa, A. (2001), "Measuring and modifying interface properties of PVA fibers in ECC matrix", J. Mater. Civil Eng., 13(6), 399-406. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:6(399).
  24. Chen, J., Zhao, D., Jin, X., Wang, C., Wang, D. and Ge, H. (2014), "Modifying glass fibers with graphene oxide: Towards highperformance polymer composites", Compos. Sci. Technol., 97, 41-45. https://doi.org/10.1016/j.compscitech.2014.03.023.
  25. Chen, M., Zhong, H., Chen, L., Zhang, Y. and Zhang, M. (2021), "Engineering properties and sustainability assessment of recycled fibre reinforced rubberised cementitious composite", J. Clean. Prod., 278, 123996. https://doi.org/10.1016/j.jclepro.2020.123996.
  26. Choi, J. and Lee, B.Y. (2015), "Bonding properties of basalt fiber and strength reduction according to fiber orientation", Mater. Basel, 8(10), 6719-6727. https://doi.org/10.3390/ma8105335.
  27. Chung, D. (2010), Composite Materials: Science and Applications, Springer Science & Business Media, New York, NY, USA.
  28. Chung, D.D. (2005), "Dispersion of short fibers in cement", J. Mater. Civil Eng., 17(4), 379-383. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:4(379).
  29. Cevik (2014), "Usability of basalt fibers in concrete roads", MSc Dissertation, Pamukkale University, Denizli, Turkey.
  30. Comak, B., Bideci, A. and Salli Bideci, O . (2018), "Effects of hemp fibers on characteristics of cement based mortar", Constr. Build. Mater., 169, 794-799. https://doi.org/10.1016/J.CONBUILDMAT.2018.03.029.
  31. Dias, D.P. and Thaumaturgo, C. (2005), "Fracture toughness of geopolymeric concretes reinforced with basalt fibers", Cement Concrete Compos., 27(1), 49-54. https://doi.org/10.1016/j.cemconcomp.2004.02.044.
  32. Elkashef, M. and Abou-Zeid, M.N. (2017), "Performance of carbon nanotubes in mortar using different surfactants", Can. J. Civil Eng., 44(8), 619-625. https://doi.org/10.1139/cjce-2016-0570.
  33. Felekoglu, B., Tosun, K. and Baradan, B. (2009), "A comparative study on the flexural performance of plasma treated polypropylene fiber reinforced cementitious composites", J. Mater. Pr. Technol., 209(11), 5133-5144. https://doi.org/10.1016/j.jmatprotec.2009.02.015.
  34. Fiore, V., Di Bella, G. and Valenza, A. (2011), "Glass-basalt/epoxy hybrid composites for marine applications", Mater. Des., 32(4), 2091-2099. https://doi.org/10.1016/j.matdes.2010.11.043.
  35. Fiore, V., Scalici, T., Di Bella, G. and Valenza, A. (2015), "A review on basalt fibre and its composites", Compos. Part B: Eng., 74, 74-94. https://doi.org/10.1016/j.compositesb.2014.12.034.
  36. Guo, Z., Wan, C., Xu, M. and Chen, J. (2018), "Review of basalt fiber-reinforced concrete in China: Alkali resistance of fibers and static mechanical properties of composites", Adv. Mater. Sci. Eng., 2018. https://doi.org/10.1155/2018/9198656.
  37. Hanafi, M., Aydin, E. and Ekinci, A. (2020a), "Fiber-reinforced cement paste composites for better sustainability", Mater., 13, 1952. https://doi.org/10.20944/preprints202003.0245.v1.
  38. Hanafi, M., Aydin, E. and Ekinci, A. (2020b), "Engineering properties of basalt fiber-reinforced bottom ash cement paste composites", Mater., 13(8), 1952. https://doi.org/10.3390/MA13081952.
  39. He, S., Qiu, J., Li, J. and Yang, E.H. (2017), "Strain hardening ultra-high performance concrete (SHUHPC) incorporating CNF-coated polyethylene fibers", Cement Concrete Res., 98, 50-60. https://doi.org/10.1016/j.cemconres.2017.04.003.
  40. Iglesias, J.G., Gonzalez-Benito, J., Aznar, A.J., Bravo, J. and Baselga, J. (2002), "Effect of glass fiber surface treatments on mechanical strength of epoxy based composite materials", J. Colloid Interf. Sci., 250(1), 251-260. https://doi.org/10.1006/jcis.2002.8332.
  41. Iorio, M., Marra, F., Santarelli, M.L. and Gonzalez-Benito, J. (2021), "Reinforcement-matrix interactions and their consequences on the mechanical behavior of basalt fiberscement composites", Constr. Build. Mater., 309, 125103. https://doi.org/10.1016/J.conbuiltmat.2021.125103.
  42. Iorio, M., Santarelli, M.L., Gonzalez-Gaitano, G. and GonzalezBenito, J. (2018), "Surface modification and characterization of basalt fibers as potential reinforcement of concretes", Appl. Surf. Sci., 427, 1248-1256. https://doi.org/10.1016/j.apsusc.2017.08.196.
  43. Jenifer, J.V., Brindha, D., Jenifer, J.V. and Brindha, D. (2021), "Development of hybrid steel-basalt fiber reinforced concrete - in aspects of flexure, fracture and microstructure", Rev. la constr., 20(1), 62-90. https://doi.org/10.7764/RDLC.20.1.62.
  44. Jiang, C., Fan, K., Wu, F. and Chen, D. (2014), "Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete", Mater. Des., 58, 187-193. https://doi.org/10.1016/J.MATDES.2014.01.056.
  45. Kabay, N. (2014), "Abrasion resistance and fracture energy of concretes with basalt fiber", Constr. Build. Mater., 50, 95-101. https://doi.org/10.1016/j.conbuildmat.2013.09.040.
  46. Kalla, P., Rana, A., Chad, Y.B., Misra, A. and Csetenyi, L. (2015), "Durability studies on concrete containing wollastonite", J. Clean. Prod., 87(C), 726-734. https://doi.org/10.1016/j.jclepro.2014.10.038.
  47. Kang, S.T., Lee, B.Y., Kim, J.K. and Kim, Y.Y. (2011), "The effect of fibre distribution characteristics on the flexural strength of steel fibre-reinforced ultra high strength concrete", Constr. Build. Mater., 25(5), 2450-2457. https://doi.org/10.1016/J.CONBUILDMAT.2010.11.057.
  48. Kirthika, S.K. and Singh, S.K. (2018), "Experimental Investigations on Basalt Fibre-Reinforced Concrete", J. Inst. Eng. Ser. A, 99(4), 661-670. https://doi.org/10.1007/S40030-018-0325-4/FIGURES/17.
  49. Laverde, V., Marin, A., Benjumea, J.M. and Rincon Ortiz, M. (2022), "Use of vegetable fibers as reinforcements in cement-matrix composite materials: A review", Constr. Build. Mater., 340, 127729. https://doi.org/10.1016/J.CONBUILDMAT.2022.127729.
  50. Lee, G.W. and Choi, Y.C. (2022), "Effect of abaca natural fiber on the setting behavior and autogenous shrinkage of cement composite", J. Build. Eng., 56, 104719. https://doi.org/10.1016/J.JOBE.2022.104719.
  51. Li, F., Liu, Y., Qu, C.B., Xiao, H.M., Hua, Y., Sui, G.X. and Fu, S.Y. (2015), "Enhanced mechanical properties of short carbon fiber reinforced polyethersulfone composites by graphene oxide coating", Polym., 59, 155-165. https://doi.org/10.1016/j.polymer.2014.12.067.
  52. Li, V. (2008), Engineered Cementitious Composites (ECC) Material, Structural, and Durability Performance, CRC Press, Boca Raton, FL, USA.
  53. Li, V.C., Fischer, G., Kim, Y., Lepech, M.D., Qian, S., Weimann, M. and Wang, S. (2003), "Durable link slabs for jointless bridge decks based on strain-hardening cementitious composites", Research Report No. RC-1438; University of Michigan, Ann Arbor, MI, USA.
  54. Li, V.C. (2003), "On engineered cementitious composites (ECC) a review of the material and its applications", J. Adv. Concete Technol., 1(3), 215-230. https://doi.org/10.3151/jact.1.215.
  55. Li, V.C. and Leung, C.K.Y. (1992), "Steady-state and multiple cracking of short random fiber composites", J. Eng. Mech., 118(11), 2246-2264. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:11(2246).
  56. Lin, Z., Kanda, T. and Li, V. (1999), "On interface property characterization and performance of fiber reinforced cementitious composites", Concrete Sci. Eng., 1, 173-174.
  57. Loh, Z.P., Mo, K.H., Tan, C.G. and Yeo, S.H. (2019), "Mechanical characteristics and flexural behaviour of fibre-reinforced cementitious composite containing PVA and basalt fibres", Sadhana - Acad. Proc. Eng. Sci., 44(4), 1-9. https://doi.org/10.1007/s12046-019-1072-6.
  58. Lopez-Buendia, A.M., Romero-Sanchez, M.D., Climent, V. and Guillem, C. (2013), "Surface treated polypropylene (PP) fibres for reinforced concrete", Cement Concrete Res., 54, 29-35. https://doi.org/10.1016/j.cemconres.2013.08.004.
  59. Lopresto, V., Leone, C. and De Iorio, I. (2011), "Mechanical characterisation of basalt fibre reinforced plastic", Compos. Part B: Eng., 42(4), 717-723. https://doi.org/10.1016/j.compositesb.2011.01.030.
  60. Lu, L., Zhao, P. and Lu, Z. (2018), "A short discussion on how to effectively use graphene oxide to reinforce cementitious composites", Constr. Build. Mater., 189, 33-41. https://doi.org/10.1016/j.conbuildmat.2018.08.170.
  61. Lu, Z., Yin, R., Yao, J. and Leung, C.K.Y. (2019), "Surface modification of polyethylene fiber by ozonation and its influence on the mechanical properties of Strain-Hardening Cementitious Composites", Compos. Part B: Eng., 177, 107446. https://doi.org/10.1016/j.compositesb.2019.107446.
  62. Luo, J., Duan, Z. and Li, H. (2009), "The influence of surfactants on the processing of multi-walled carbon nanotubes in reinforced cement matrix composites", Phys. Status Solid. A, 206(12), 2783-2790. https://doi.org/10.1002/pssa.200824310.
  63. Ma, G., Salman, N.M., Wang, L. and Wang, F. (2020), "A novel additive mortar leveraging internal curing for enhancing interlayer bonding of cementitious composite for 3D printing", Constr. Build. Mater., 244, 118305. https://doi.org/10.1016/j.conbuildmat.2020.118305.
  64. Maalej, M., Li, V.C. and Hashida, T. (1995), "Effect of fiber rupture on tensile properties of short fiber composites", J. Eng. Mech., 121(8), 903-913. https://doi.org/10.1061/(asce)0733-9399(1995)121:8(903).
  65. Niu, D., Su, L., Luo, Y., Huang, D. and Luo, D. (2020), "Experimental study on mechanical properties and durability of basalt fiber reinforced coral aggregate concrete", Constr. Build. Mater., 237, 117628. https://doi.org/10.1016/J.CONBUILDMAT.2019.117628.
  66. Novitskii, A.G. (2004), "High-temperature heat-insulating materials based on fibers from basalt-type rock materials", Refract. Ind. Ceram., 45(2), 144-146. https://doi.org/10.1023/B:REFR.0000029624.43008.EF.
  67. Ozkan, S. (2017), "Investigation of structurally usability of cement based composites with basalt fiber", Ph.D. Dissertation, Suleyman Demirel Universty, Isparta, Turkey.
  68. Ozkan, S. and Coban, O. (2021), "The hybrid effects of basalt and PVA fiber on properties of a cementitious composite: Physical properties and non-destructive tests", Constr. Build. Mater., 312, 125292. https://doi.org/10.1016/J.CONBUILDMAT.2021.125292.
  69. Ozkan, S. and Demir, F. (2020a), "The hybrid effects of PVA fiber and basalt fiber on mechanical performance of cost effective hybrid cementitious composites", Constr. Build. Mater., 263, 120564. https://doi.org/10.1016/J.CONBUILDMAT.2020.120564.
  70. Pakravan, H.R., Jamshidi, M. and Latifi, M. (2009), "Performance of fibers embedded in a cementitious matrix", J. Appl. Polym. Sci., 116(3), 1247-1253. https://doi.org/10.1002/app.31524.
  71. Parveen, S., Rana, S., Fangueiro, R. and Paiva, M.C. (2015), "Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique", Cement Concrete Res., 73, 215-227. https://doi.org/10.1016/j.cemconres.2015.03.006.
  72. Peled, A., Zaguri, E. and Marom, G. (2008), "Bonding characteristics of multifilament polymer yarns and cement matrices", Compos. Part A: Appl. Sci. Manuf., 39(6), 930-939. https://doi.org/10.1016/j.compositesa.2008.03.012.
  73. Preet Singh, J.I., Dhawan, V., Singh, S. and Jangid, K. (2017), "Study of effect of surface treatment on mechanical properties of natural fiber reinforced composites", Mater. Today Proc., 4(2), 2793-2799. https://doi.org/10.1016/J.MATPR.2017.02.158.
  74. Ramakrishnan, V., Tolmare, N.S. and Brik, V.B. (1998), "Performance evaluation of 3-D basalt fiber reinforced concrete & basalt rod reinforced concrete", No. NCHRP-IDEA Project 45; Transportation Research Board, Washington, D.C., USA.
  75. Ranade, R., Stults, M.D., Lee, B. and Li, V.C. (2012), "Effects of fiber dispersion and flaw size distribution on the composite properties of PVA-ECC", RILEM Bookser., 2, 107-114. https://doi.org/10.1007/978-94-007-2436-5_14.
  76. Ranjbar, N. and Zhang, M. (2020), "Fiber-reinforced geopolymer composites: A review", Cement Concrete Compos., 107, 103498. https://doi.org/10.1016/j.cemconcomp.2019.103498.
  77. Ren, B., Noda, J. and Goda, K. (2010), "Effects of fiber orientation angles and fluctuation on the stiffness and strength of sliver-based green composites", J. Soc. Mater. Sci. Japan, 59(7), 567-574. https://doi.org/10.2472/JSMS.59.567.
  78. Rostami, R., Zarrebini, M., Sanginabadi, K., Mostofinejad, D., Mahdi Abtahi, S. and Fashandi, H. (2020), "An investigation into influence of physical and chemical surface modification of macro-polypropylene fibers on properties of cementitious composites", Constr. Build. Mater., 244, 118340. https://doi.org/10.1016/J.CONBUILDMAT.2020.118340.
  79. Sadrmomtazi, A., Tahmouresi, B. and Saradar, A. (2018), "Effects of silica fume on mechanical strength and microstructure of basalt fiber reinforced cementitious composites (BFRCC)", Constr. Build. Mater., 162, 321-333. https://doi.org/10.1016/j.conbuildmat.2017.11.159.
  80. Sahmaran, M. and Erdem, T.K. (2012), "High performance fiber reinforced cementitious composites showing micromechanically designed strain hardening for sustainable development", Ankara, Turkey.
  81. Siad, H., Lachemi, M., Sahmaran, M., Mesbah, H.A. and Hossain, K.A. (2018), "Advanced engineered cementitious composites with combined self-sensing and self-healing functionalities", Constr. Build. Mater., 176, 313-322. https://doi.org/10.1016/j.conbuildmat.2018.05.026.
  82. Sigma Aldrich (2022), Triton X-100; Merck KGaA, Darmstadt, Germany. https://www.sigmaaldrich.com
  83. Sim, J., Park, C. and Moon, D.Y. (2005), "Characteristics of basalt fiber as a strengthening material for concrete structures", Compos. Part B: Eng., 36(6-7), 504-512. https://doi.org/10.1016/J.COMPOSITESB.2005.02.002.
  84. Soe, K.T., Zhang, Y.X. and Zhang, L.C. (2013), "Material properties of a new hybrid fibre-reinforced engineered cementitious composite", Constr. Build. Mater., 43, 399-407. https://doi.org/10.1016/j.conbuildmat.2013.02.021.
  85. Song, H., Liu, J., He, K. and Ahmad, W. (2021), "A comprehensive overview of jute fiber reinforced cementitious composites", Case Stud. Constr. Mater., 15, e00724. https://doi.org/10.1016/J.CSCM.2021.E00724.
  86. Sriram, M. and Aswin Sidhaarth, K.R. (2022), "Various properties of natural and artificial fibers with cementitious composites in hybrid form - A review", Mater. Today Proc., 60, 2018-2025. https://doi.org/10.1016/J.MATPR.2022.01.266.
  87. Tian, H. and Zhang, Y.X. (2017), "Ageing effect on tensile and shrinkage behaviour of new green hybrid fibre-reinforced cementitious composites", Cement Concrete Compos., 75, 38-50. https://doi.org/10.1016/j.cemconcomp.2016.11.005.
  88. Veigas, M.G., Najimi, M. and Shafei, B. (2022), "Cementitious composites made with natural fibers: Investigation of uncoated and coated sisal fibers", Case Stud. Constr. Mater., 16, e00788. https://doi.org/10.1016/J.CSCM.2021.E00788.
  89. Wang, B., Yan, L. and Kasal, B. (2022), "A review of coir fibre and coir fibre reinforced cement-based composite materials (2000-2021)", J. Clean. Prod., 338, 130676. https://doi.org/10.1016/J.JCLEPRO.2022.130676.
  90. Wang, D., Ju, Y., Shen, H. and Xu, L. (2019), "Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber", Constr. Build. Mater., 197, 464-473. https://doi.org/10.1016/j.conbuildmat.2018.11.181.
  91. Wei, B., Cao, H. and Song, S. (2010a), "Environmental resistance and mechanical performance of basalt and glass fibers", Mater. Sci. Eng. A, 527(18-19), 4708-4715. https://doi.org/10.1016/j.msea.2010.04.021.
  92. Wei, B., Cao, H. and Song, S. (2010b), "Tensile behavior contrast of basalt and glass fibers after chemical treatment", Mater. Des., 31(9), 4244-4250. https://doi.org/10.1016/j.matdes.2010.04.009.
  93. Xu, M., Song, S., Feng, L., Zhou, J., Li, H. and Li, V.C. (2021), "Development of basalt fiber engineered cementitious composites and its mechanical properties", Constr. Build. Mater., 266, 121173. https://doi.org/10.1016/J.CONBUILDMAT.2020.121173.
  94. Yan, S., Jiao, H., Yang, X., Wang, J. and Chen, F. (2020), "Bending properties of short-cut basalt fiber shotcrete in deep soft rock roadway", Adv. Civil Eng., 2020, 1. https://doi.org/10.1155/2020/5749685.
  95. Yao, X., Shamsaei, E., Chen, S., Zhang, Q.H., de Souza, F.B., Sagoe-Crentsil, K. and Duan, W. (2019), "Graphene oxidecoated Poly(vinyl alcohol) fibers for enhanced fiber-reinforced cementitious composites", Compos. Part B: Eng., 174, 107010. https://doi.org/10.1016/j.compositesb.2019.107010.
  96. Zhang, X., Fan, X., Yan, C., Li, H., Zhu, Y., Li, X. and Yu, L. (2012a), "Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide", ACS Appl. Mater. Interf., 4(3), 1543-1552. https://doi.org/10.1021/am201757v.
  97. Zhang, X., Zhou, X., Ni, H., Rong, X., Zhang, Q., Xiao, X., Huan, H., Liu, J.F. and Wu, Z. (2018), "Surface modification of basalt fiber with organic/inorganic composites for biofilm carrier used in wastewater treatment", ACS Sustainab. Chem. Eng., 6(2), 2596-2602. https://doi.org/10.1021/ACSSUSCHEMENG.7B04089/SUPPL_FILE/SC7B04089_SI_001.PDF.
  98. Zhang, Y., Yu, C., Chu, P.K., Lv, F., Zhang, C., Ji, J., Zhang, R. and Wang, H. (2012b), "Mechanical and thermal properties of basalt fiber reinforced poly(butylene succinate) composites", Mater. Chem. Phys., 133(2-3), 845-849. https://doi.org/10.1016/j.matchemphys.2012.01.105.
  99. Zhou, J., Qian, S., Sierra Beltran, M.G., Ye, G., van Breugel, K. and Li, V.C. (2010), "Development of engineered cementitious composites with limestone powder and blast furnace slag", Mater. Struct., 43(6), 803-814. https://doi.org/10.1617/S11527-009-9549-0.